
UNIVERSITÀ DEGLI STUDI DI TORINO

Dipartimento Di Informatica

Corso di Laurea Magistrale in Informatica

Master’s Degree Thesis

Overcoming the limits of
Deep Reinforcement Learning
with Model-Based approach

Supervisor:
Prof. Marco Aldinucci
Antonio Mastropietro

Candidate:
Luca Sorrentino

Anno Accademico 2019/2020

i

Abstract

Reinforcement Learning (RL) is a subfield of Machine Learning where an agent
learns to solve a task by interacting with the environment by trial and error without
explicit knowledge. The agent receives a reward signal as feedback for every action
it takes, and it learns to prefer those accompanied by a positive reward over those
accompanied by a negative reward. This simple formulation allows the agent to
directly choose the right actions from sensory observations, e.g. high dimensional
inputs like camera frames, and to solve many complex tasks, like playing video-
games or controlling robots.
The standard formulation exposed before is called Model-Free Reinforcement Learn-
ing because it does not require the agent to predict explicitly the environment dy-
namics, thus it can be viewed as a black-box approach. However, it requires a
tremendous amount of experience and the lack of sample efficiency limits the useful-
ness of these algorithms in practice. One possible solution to overcome this problem
is to combine the Reinforcement Learning framework with planning algorithms.
This approach is called Model-Based RL. Instead of directly mapping observations
to actions, Model-based RL allows the agent to plan explicitly the sequence of ac-
tions to be taken by observing the environment dynamics predicted by an environ-
ment model.
In recent years RL has been combined with Deep Learning algorithms to obtain out-
standing results and reach superhuman performance in complex tasks. This com-
bination of Reinforcement Learning and Deep Learning has been called Deep Re-
inforcement Learning (DRL). In this thesis, one of the state-of-the-art Model-Based
DRL algorithms called PlaNet is deeply investigated and compared with the model-
free DRL algorithm called Deep Deterministic Policy Gradient (DDPG). All the ex-
periments are based on Deepmind Control Suite that is a set of continuous control
tasks that are built for benchmarking reinforcement learning agents. Both the algo-
rithms examined were tested on a subset of four environments. The main strengths
and weaknesses of both approaches are highlighted in order to show if and how
much a Model-Based RL can overcome the limits of Model-Free RL.

I declare that the material submitted for assessment is my own work except
where credit is explicitly given to others by citation or acknowledgement.

ii

Italian abstract

Il Reinforcement Learning (RL) è una tecnica di Machine Learning in cui vi è un
agente che impara a risolvere un task interagendo col l’ambiente in cui si trova
e di cui non ha nessuna conoscenza procedendo con un approccio trial and er-
ror. L’agente riceve un segnale di feedback chiamato reward per ogni azione che
compie e impara a favorire quelle azioni accompagnate da un reward positivo a
discapito di quelle accompagnate da un reward negativo. Questa semplice for-
mulazione permette all’agente di prevedere le migliori azioni a partire dai sensori
di input, come ad esempio i frame della camera, e di risolvere quindi molti task
complessi, come giocare a videogiochi o controllare robot. La formulazione stan-
dard espressa finora viene definita Model-Free Reinforcement Learning perchè non
richiede all’agente di costruirsi un modello dell’environment e di prevederne es-
plicitamente le dinamiche. Purtroppo, questo approccio diretto richiede un numero
tremendamente elevato di esperienza e questo scarso livello di sample-efficiency
limita l’utilità di questi algoritmi nell’uso pratico. Una possibile soluzione per su-
perare questo problema è quella di combinare il Reinforcement Learning con algo-
ritmi di planning. Questo approccio è chiamato Model-Based DRL. Invece di creare
un mapping diretto tra osservazioni e azioni, il MBDRL permette all’agente di piani-
ficare in modo esplicito la sequenza di azioni da intraprendere in base alle previsioni
sugli sviluppi dell’ environment.

Negli ultimi anni il RL è stato combinato con algoritmi di Deep Learning otte-
nendo cosi risultati eccezionali arrivando a superare umani esperti anche in task
complessi. Questa combinazione di RL e DL prende il nome di Deep Reinforcement
Learning (DRL). In questa tesi, uno degli più recenti algoritmi di Model-Based DRL
chiamato PlaNet viene esplorato e comparato con un algoritmo di Model-Free DRL
chiamato Deep Deterministic Policy Gradient. Tutti gli esperimenti sono basati sulla
Deepmind Control Suite, un set di task creati per effettuare benchmark di agenti ad-
destrati tramite DRL. Entrambi gli algoritmi presi in esame sono stati testati su quat-
tro environments. I maggiori punti di forza e di debolezza dei due approcci vengono
messi in luce per mostrare se e quanto l’approccio Model-Based sia in grado di su-
perare i limiti del Model-Free DRL.

“Dichiaro che il sottoscritto nonché autore del documento è il responsabile del
suo contenuto, e per le parti tratte da altri lavori, queste vengono espressamente-
dichiarate citando le fonti”

iii

"When I started working on neural network models in the 1970s,
people in artificial intelligence kept telling me that Minsky and Papert

have proved that these models were no good.”

Geoffrey Hinton

“I wanted to just prove everybody wrong.”

Marshall Mathers

Acknowledgements

Questo lavoro segna una tappa importante di un percorso iniziato già qualche anno
fa quando, implementando A* vidi per la prima volta un software che portava a
termine un compito senza richiedere una esplicita soluzione da programmare. A*
aveva però molti limiti, uno in particolare era la richiesta di un umano che si spe-
cializzasse abbastanza da riuscire a trovare un’euristica per quel problema. Da quel
momento nacque in me la volontà di creare un agente che fosse il più autonomo
possibile, limitando in maniere sempre maggiore l’ingerenza umana. Ben presto in-
iziai a concentrare le mie energie sull’apprendimento per rinforzo, per permettere
alla IA di imparare direttamente dalla propria esperienza, e sulle reti neurali per au-
mentare la potenza espressiva della mente dell’agente (percezione visiva, memoria,
capacità rappresentativa).

Quando ho iniziato questo percorso ero convinto che avrei saltato questa pagina,
visto che ero circondato da gente scettica che non mi era di aiuto e anzi frenava il
mio entusiasmo. Dopo poco fortunatamente trovai una via di fuga attraverso il web.
Per cui il mio primo ringraziamento va a chiunque utilizzi questo potente mezzo per
trasmettere conoscenza. In particolar modo vorrei ringraziare: Salman Khan, An-
drew Ng, David Silver, Sergey Levine.

Dopo un primo anno di studio autonomo e parallelo rispetto a quello universitario,
avevo maturato una piccola conscenza di base che ho poi avuto modo di ampliare
durante il mio percorso in Addfor. Il mio secondo ringraziamento va quindi a loro
per avermi accolto e per aver creduto ed investito in me, fornendomi l’attrezzatura
tecnica necessaria ed il supporto, sia sul piano tecnico che su quello umano. Un
ringraziamento particolare ad Antonio, Sonia ed Enrico.

Infine, il mio terzo ringraziamento va alla mia famiglia per il supporto, ai miei col-
leghi per avermi accompagnato in questo percorso ed ai miei amici (lontani e vicini)
per avermi incoraggiato quando le aspettative si facevano vertiginose, per aver sop-
portato la mia assenza quando le scadenze si avvicinavano e per avermi sostenuto
e consigliato quando gli esperimenti fallivano. Un ringraziamento particolare va a
Erica per essere riuscita a farmi ritrovare la serenità persa in questi ultimi anni.

Contents

1 Introduction 1
1.0.1 Thesis Outline . 2

2 Foundamentals of Machine Learning 4
2.1 Introduction . 4
2.2 Supervised Learning . 5

2.2.1 Recurrent Neural Networks . 5
2.3 Unsupervised Learning . 10

2.3.1 Variational Autoencoder . 10
2.4 Reinforcement Learning . 15

3 Elements of Reinforcement Learning 16
3.1 Markov Decision Process . 16

3.1.1 Markov Chain . 16
3.1.2 Markov Decision Process . 17
3.1.3 Partially Observable Markov Decision Process 19

3.2 Solving Markov Decision Process . 19
3.2.1 Prediction Problem . 19
3.2.2 Control Problem . 20

3.3 Taxonomy of Reinforcement Learning Algorithms 22

4 Model Free Reinforcement Learning 26
4.1 Deep Reinforcement Learning . 26

4.1.1 Deep Q Network . 26
4.2 Policy Gradient . 27

4.2.1 REINFORCE algorithm . 28
4.3 Actor-Critic: . 29

4.3.1 Deep Deterministic Policy Gradient 30

5 Model Based Reinforcement Learning 33
5.1 Model Based Reinforcement Learning 33
5.2 Planet . 34

5.2.1 RSSM . 34
5.2.2 Planning . 40

5.3 Cross Entropy Method . 40
5.3.1 Algorithm . 41

vi

CONTENTS

6 Experiments 43
6.1 DeepMind Control Suite . 43
6.2 Model Free experiments . 44
6.3 Model Free experiments from frames 47
6.4 Model Based experiments . 50
6.5 Experiments with PlaNet . 55
6.6 Comparisons . 64

7 Conclusions 68

Bibliography 73

vii

viii

Chapter 1

Introduction

The idea of Reinforcement Learning (RL) has been known since Turing’s time. He
talked about it in his article "Computing machinery and intelligence": "We normally
associate punishments and rewards with the teaching process. Some simple child
machines can be constructed or programmed on this sort of principle. The machine
has to be so constructed that events that shortly preceded the occurrence of a pun-
ishment signal are unlikely to be repeated. In contrast, a reward signal increased
the probability of repetition of the events, which led up to it.[1]" This idea is now
called reinforcement learning and consists of training an agent to achieve a goal by
interacting directly in an environment without prior knowledge. The agent receives
positive or negative feedback for each action it takes and tries to accumulate positive
rewards. From that time to our day, a lot of progress has been achieved. In recent
years RL has been combined with Deep Learning algorithms to obtain outstanding
results and reach superhuman performance in complex tasks, for example learning
to play Go from scratch [2] or flying an acrobatic model helicopter [3].

Unfortunately, in order to reach some impressive results, these methods require
a prohibitive amount of samples. For example, in 2019, Open AI released OpenAI
Five: the first AI able to beat the world champions in an e-sports game called Dota
2 [4]. Despite the incredible result, the training cost was tremendous, the authors
report that the OpenAI Five has experienced an average of 250 years of simulated
experience per day. This is the reason why the main exciting results are obtained
with agents that act in a virtual environment. Sometimes, these algorithms are also
used to train a real world agent [5], but the training is mostly performed into a sim-
ulator. Build a simulator each time we need to train an agent for a task can be too
expensive,for example think about a robot that learns to run, and it is an open re-
search problem how to transfer the learned policy reliably to the real world. At the
same time, the idea of performing millions of experiments with a physical robot in a
reasonable amount of time and without hardware wear and tear is unrealistic. Alan
Turing had already foreseen this problem, and in his article, he says: "The use of
punishments and rewards can at best be a part of the teaching process... By the time
a child has learned to repeat ’Casabianca’ he would probably feel very sore indeed".
One of the most promising solutions to improve the sample efficiency is the Model-

1

CHAPTER 1. INTRODUCTION

Based approach that combines the power of supervised learning, the reinforcement
learning framework, and the planning algorithms. The key idea is to learn the en-
vironment’s transition model to allow the agent to simulate interactions instead of
acting directly without any knowledge. There are several approaches to learn pre-
dictive models of the dynamic environment using pixel information. If a sufficiently
accurate model of the environment can be learned, then even a simple controller
can be used to control a robot directly from camera images [6]. Another advantage
of the model-based approach is that once the agent learns the model dynamics, it
could quickly adapt without a fully retraining whenever the reward function was
switched to assign a new task [7].

Unfortunately, the research in model-based RL is not been very standardized.
The authors often use different environments (sometimes self-designed environ-
ments), and sometimes they do not publish their code. This thesis aims to create a
fair comparison, built over standard benchmark environments the Deepmind Con-
trol Suite [8], between one of the most promising model-based algorithms called
PlaNet [9] and one standard model-free called Deep Deterministic Policy Gradient
[10].
Similar work is being done in 2019 by Tingwu Wang et al. [11]. They gather a wide
collection of model-based reinforcement learning (MBRL) algorithms and propose
over 18 benchmarking environments specially designed for MBRL and compare the
results also with a model-free algorithms. All the tested algorithms in that research
work in low dimension. In our work, we use the PlaNet algorithm that promises
to perform well with high dimensional input. Moreover, since we focus on a single
algorithm, we also implement some variants to improve its results on a benchmark
environment.

Therefore, the following research questions are addressed:

• What are the pro and cons of the two approaches?

• What is the effective sample efficiency improvement when we use a model-
based algorithm?

• How does the training time change?

• Does the model still achieve the same results?

• What improvements can we apply to the model-based algorithm?

1.0.1 Thesis Outline

Following this introductory chapter, the thesis branches between two main con-
cepts, Deep Learning and Reinforcement Learning. Both have an extensive dedi-
cated chapter. Then the RL theory branches again between Model-based and Model-
free algorithms. In the dedicated chapters some architectures are presented. Lastly,
we present our experiments and conclusion. Chapter 2 presents some main concepts

2

CHAPTER 1. INTRODUCTION

of the Deep Learning that will be necessary to do the experiments. Both supervised
and unsupervised learning techniques are applied in later chapters. Chapter 3 in-
troduces to classic Reinforcement Learning theory with an explanation of the math-
ematical preliminaries associated with it. An introduction to the difference between
the model-free and model-based methods is introduced. Chapter 4 discusses some
Deep Reinforcement Learning algorithms including the first one used for this the-
sis called Deep Determinitic Policy Gradient (DDPG). Chapter 5 provides a focus
over the model-based DRL algorithms and it introduces the second main algorithm
used for this thesis (PlaNet). Chapter 6 introduces the suite of benchmark environ-
ments, evaluates the performance of the two proposed method and discusses the
results. Moreover, it introduces a new technique developed in this thesis to improve
the sample efficiency of the model-based algorithm. Chapter 7 concludes gathered
from the current endeavor and considerations for future work.

3

Chapter 2

Foundamentals of Machine Learning

In this section, we introduce the basic of Machine learning. In particular, we intro-
duce the concepts of supervised learning, unsupervised learning, self-supervised
learning and reinforcement leaning. We explain the difference between them and
present some algorithms used for the thesis. The reinforcement learning section is
intended as introduction, while it will be deeply exposed in the next chapters. For
further details, refer to the body of Deep Learning[12]

2.1 Introduction

In its famous book, Tom Mitchell [13] provided widely quoted definitions of ma-
chine learning. It says: "A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E. For example, a com-
puter program that learns to play checkers might improve its performance as mea-
sured by its ability to win at the class of tasks involving playing checkers games,
through experience obtained by playing games against itself."

Usually, machine learning algorithms are used for tasks that are too difficult to
solve with fixed programs written by humans. There are many classes of tasks that
can be approached with machine learning, for example classification, regression,
clustering, dimensionality reduction, data generation, machine translation, anomaly
detection, denoising, density estimation.

For every task, there is a specific metric. The metric is a quantitative measure
of the learner’s abilities to solve the task, even for data that it has not seen before.
Informally speaking, there are two main metrics. The first one is the loss that mea-
sures the model’s error. For example for the classification task we could use a 0-1
loss that increment the total error rate by 0 when the input is correct classified and
by 1 if it is none. The third is the reward that is a feedback value that an agent receive
every time it takes an action. It is positive when the action is correct and negative
otherwise. So the performances of the agent depend on how much reward it is able
to collect.

Machine learning algorithms can be classified by what kind of experience they
are allowed to have in three main categories:

4

CHAPTER 2. FOUNDAMENTALS OF MACHINE LEARNING

• Supervised learning: if all the model experience is concentrated in form of a
given dataset in which every example is expressed by a vector of features.

• Unsupervised learning: where the examples in the dataset are not labelled.

• Reinforcement learning: when the agent collect autonomously the experience
in the dataset by interacting with the environment.

2.2 Supervised Learning

The problem that are faced with supervised learning are:

• Classification: The classification problem consists of approximating a function
f : Rn → {1, ..., k} where k is the number of classes in which the dataset is
divided. This function y = f (x) will map every vector of features in which the
input is represented to the corrected categories identified by category y.

• Regression: In the regression task the program is asked to predict a continuous
value relate to the input. So, in order to solve this task, the program should
learn a function f : Rn → R.

It is time now to introduce a metric to evaluate algorithm performance. The task
defines this metric. For example, the loss function that we use for the classification
task is the cross entropy loss. This metrics measures how the predicted distribution
is close to the one that we are trying to approximate. For the regression problem
instead, we could use the mean squared error that increment the loss value propor-
tionally to the distance between the correct answer and the model given value.

Once the model is trained, we want to know how it works with never seen before
data to determine if the model has been capable of generalizing over the dataset.
This ability is called generalization.

To do that, we divide the dataset into three parts:

• Train set: used for the training;

• Validation set: used to evaluate the model and tune the parameters before a
new training iteration;

• Test set: used to calculate the final performance measure of the model;

It is essential to specify that the model does not see examples from the training’s
development and test set.

2.2.1 Recurrent Neural Networks

In this section, we briefly introduce the Recurrent Neural Network; for an extended
explanation, see [14]. This part is also based on the Understanding LSTM Networks
blog post [15].

5

CHAPTER 2. FOUNDAMENTALS OF MACHINE LEARNING

These models are called "neural networks" because they are inspired by neu-
roscience. As the biological version, the artificial neuron is modeled as a central
nucleus connected with different inputs. An artificial neuron’s mathematical model
is a weighted sum of the neuron connection wi and the respective input xi.

a = w1x1 + w2x1 + w3x3 + wixi + . . . + b =
i=N

∑
i=0

(wixi) + b

We can rewrite more compactly the above formula using the matrix formulation:
a = Wx + b . In order to produce the neuron output, the calculated weighted sum is
passed through a non-linear activation function Φ. In that way the model acquire
the ability to deal with more complex data respect to the one affordable by linear
models.

o = Φ(a) = Φ(Wx + b)

The early artificial neural model adopted the Sigmoid function as an activation func-
tion, but today the common choice is the Rectified Linear unit (ReLu). Connecting
various neurons allow the model to increase the representation power. In the neural
networks, each neuron receives inputs from the others and uses it to calculate its
activation value and propagate it. This network is divided into layers, each one that
contains many neurons. This architecture is called Multilayer Perceptrons (MLPs)
or Feedforward network.

In the MLP, the first layer is called input layer and receive the input. The last
one is called output layer and produces the output. All the intermediate layers are
called hidden layers. Feedforward neural network is a universal function approxi-
mation. It defines a mapping y = f (x; θ) and learns approximate whatever function
by merely learning the best set of parameter θ. These models can learn a hierarchi-
cal representation of the data, so they do not need hand-engineered features. The
training algorithm must use those hidden layers to produce the desired output, but
the dataset does not contain explicit information on how to do that.

Figure 2.1: Fully-Connected Feed-Forward Network. Image from [16].
Neural network weights are trained with an algorithm called Backpropagation.

The backpropagation algorithm is divided into two phases: a forward-pass and a

6

CHAPTER 2. FOUNDAMENTALS OF MACHINE LEARNING

backward-pass. In the forward pass, the input is propagated throughout every layer
and activation until the network’s final output is computed. Then the error is cal-
culated, calculating the difference between the network prediction and the training
label. In the backward-pass, this error is backpropagated through all the layers to
update each neuron’s weights. In the last layer, the update is obtained, calculating
the error gradient to understand the change rate of the layer weights. For the hidden
layers, instead, the chain rule is applied to propagate the gradient by decomposing
the derivative of the produced error recursively with respect to the parameters of
the previous layers.

The standard MLP model has some limitations. After each processed example,
the full state of the network is lost. As long as the input data maintains temporal in-
dependence between them, there are no problems for learning. Sometimes instead,
the data is correlated, like with video frames or words in a sentence. In that case,
we need a model that can face these correlations even without knowing the input
sequence length. We can extend the "feedforward network," in which the path of the
information strictly goes from input to the output by adding a feedback connection
in which the information can go back to the model. This extension allows us to in-
troduce the notion of time to the model. This new model is called a recurrent neural
network (RNN). In a RNN any state depend from both the current input and the
network state in the previous time step. Lastly, even if the expressive power grows
exponentially, both the inference and training grow quadratically, and they are also
differentiable end to end, so they are trainable with the backpropagation algorithm.
It is time now to introduce some details of the RNN. We define a sequence of data
as a arrays of data points x(t) extracted from a discrete sequence of time steps, each
one indexed by t and is expressed with real-valued vectors. Both the input and the
target are represented by a sequence (x(1), x(2), ..., x(T)).

Figure 2.2: Standard RNN architecture and an unfolded structure with T time steps.
Image from [17].

For each time step t the current node receive information from both the data
point xt in input and the previous state h(t−1) from the hidden node. For each time
step t, the current node receives information from both the input xt and the previous
state h(t−1) and uses this information to update the current state h(t).

h(t) = σ
(

Wxhx(t) + Whhh(t−1) + bh

)
7

CHAPTER 2. FOUNDAMENTALS OF MACHINE LEARNING

This current hidden state h(t) can be used to calculate the current output y(t).

ŷ(t) = softmax
(

Whyh(t) + by

)
The Whx is the matrix representing the weights from the input and the hidden layer.
The Whh is the matrix representing the recurrent weight between the same hidden
layer through different time steps. During the training, the error signal can be back-
propagated through the entire unfolded network across all the time steps. The back-
propagation algorithm, used in a context where time is involved, is called backprop-
agation through time (BPTT). When we try to backpropagate the error across many
time steps we can easily came across a problem of gradient exploding or gradient van-
ishing. One possible solution is to limits the maximum number of time steps in
which the error can be backpropagated. This solution is called Truncated backprop-
agation through time (TBTT). Another solution is to design a particular architecture
to limit the vanishing gradient problem without sacrifice the ability to learn long-
range dependencies. This second approach led to a new neural network architecture
called Long Short Term Memory (LSTM)

Long Short Term Memory

In 1997 Hochreiter and Schmidhuber presented a new RNN architecture called Long
Short-Term Memory (LSTM). In this network, they introduce the memory cell, a new
computational unit that replaces the traditional nodes in the network’s hidden lay-
ers, to handle the vanishing gradient problem of the RNN. In the traditional RNN,
the long memory is maintained through the weights that capture the general knowl-
edge about the data. The short memory, instead, is represented by the activation
function between each successive node. In the LSTM, the memory cell works like
intermediate storage and replaces short and long-term memory. A memory cell is
a composite unit that contains several gates that add or remove information to the
cell state. A gate is a sigmoidal unit that multiplies its output, between 0 and 1, with
the value of another node to decide how much information can pass through. We
can describe the works of the LSTM through a sequence of 3 steps:

1. The Filter: in the first step, the LSTM decides which information to accept as
input and which to forget. To do that it uses the forget gate that take in input
the current input x(t) and the previous hidden layer h(t−1) and return a vector
that will be used later to update the cell state.

Figure 2.3: The output of the sigmoid is a vector of values from zero (com-
pletely forget) to one (completely keep). Image from [15].

8

CHAPTER 2. FOUNDAMENTALS OF MACHINE LEARNING

2. The Update: in the second step, the LSTM decides how much information
store in the cell state. This step is divided into two parts: in the first one, it
uses the input gate to decide what value to update, and a tanh layer is used
to create a vector of values called candidate values that could be added to the
state. In the second one, the LSTM updates its internal state, called Cell State.

Figure 2.4: The Sigmod layer is used to decide what value to update, the Tanh
layer to generate the vector of "candidate values" that could be added to the
state. Next decides wich new information ignores, then in the tanh layer, it
processes the new information respect the previously hidden layer and with
the update gate decides which one to exclude for the update and which ti
keep. Now it combines all this information to calculate the new Cell State.
Image from [15].

3. Compute Output: in the final step, the LSTM combine previously hidden
value, current input, and current cell state to calculate the new hidden value
(that can be viewed as the current network’s output). In this step, it is used the
output layer to decide what part of the state can be outputted.

Figure 2.5: Use the internal state and the output gate to produce the new hid-
den state. Image from [15].

The LSTM is still used since they have shown a better ability to handle long-range
dependencies with respect to the simple RNNs.

9

CHAPTER 2. FOUNDAMENTALS OF MACHINE LEARNING

Figure 2.6: The LSTM architecture consist on a concatenation of LSTM cell units.
Image from [15].

2.3 Unsupervised Learning

The principal tasks of unsupervised learning are:

• Clustering: is used to automatically dividing the dataset into clusters of a
similar example.

• Dimensionality Reduction: reducing the number of observed random vari-
ables in a reduced set of principal variables.

• Generative models: learning a joint distribution over all the variables. In other
words, a generative model simulates how the data is generated in the real
world.

Recently a new subsets of Unsupervised learning methods has been introduce by
Yann LeCun in and it is call Self-supervised Learning. According with Longlong
Jing and Yingli Tian [18]

Self-supervised learning follow the same principle of provide to the learning al-
gorithm a set of pair Xi and Yi but with the difference that Yi are automatically gen-
erated without involving human annotations. That labels are called psuedo labels.
We introduce one example of this technique: the Variational Autoencoder.

2.3.1 Variational Autoencoder

Variational Autoencoder is an example of the class of generative model methods.
Here we provide a general explanation based on the introductory paper [19].

In a generative model setting, we try to estimate, explicitly or implicitly, a proba-
bility distribution of the data. Once the generative model has been tuned or trained,
we can sample from the estimated distribution and we can generate new input data
samples. The VAE is an implicit generative model, because it produces its own in-
ternal representation of the data without producing an explicit formula for the data

10

CHAPTER 2. FOUNDAMENTALS OF MACHINE LEARNING

probability distribution. For this reason, this model is also used as a method to
build a more compact representation of the data, minimizing the information loss.
For the experiments in chapter 6, the VAE is used both as a dimensionality reduction
algorithm and a generative model.

The VAE represents the marginal distribution over the samples with a function
pθ(x|z) parameterized with θ. This probability is conditionally dependent on the
latent variable z.

pθ(x) =
∫

pθ(x, z)dz =
∫

pθ(x|z)p(z)dz.

If we are in a discrete case (so if z is a discrete variable), and pθ(x|z) is assumed to
be a Gaussian distribution, then pθ(x) is a Gaussian mixture distribution. Instead, if
we are working with a continuous variable z, then pθ(x) can be seen as an infinite
Gaussian mixture distribution. In this work z is a continuous vector described by a
simple Gaussian distribution and pθ(x|z) is a conditional Gaussian.

We need a function that takes all the data in training set as inputs and extract
from them the parameters of the latent Gaussian. Then we can sample the latent
vector z from this latent Gaussian. We call this function encoder and we formally
define it as:

qφ(z|x) = N (µφ(x), σφ(x))

Then we need also another function that uses this latent vector z to retrieve x. We
call this function decoder and we formally define it as:

pθ(x|z) = N (µθ(z), σθ(z))

In order to find the best parameters θ we would like to use the Maximum Likelihood
principle that is:

θ ← arg max
θ

1
N ∑

i
log
(∫

pθ(xi|z)p(z)dz
)

. (2.1)

Unfortunately, this formula is completely intractable, because of the integral in log p(xi) =
log
∫

z p(xi|z) p(x), so we need another way.
Before moving on we introduce two concepts that we will use later: entropy and

the Kullback-Leibler divergence.
Entropy: introduced in 1948 by Claude Shannon, the entropy measures the level

of uncertainty of a stochastic variable outcome. For example, an event that has the
high probability of occurring, say 90%, do not give us much information, so it has
low entropy. Instead if we A coin instead, in which all the events have the same
probability, will have a high level of entropy. The formula of the entropy is:

H = −Ex∼p(x) [log p(x)] = −
∫

x
p(x) log p(x)dx

KL-Divergence: is a measure of how well a distribution Q approximates another
probability P, or in other words, how much information it’s lost if the distribution Q
is used instead of P.

DKL(P||Q) = Ex∼P

[
log

P(x)
Q(x)

]
11

CHAPTER 2. FOUNDAMENTALS OF MACHINE LEARNING

• Notice that it is not a distance between two distribution because is not sym-
metric:

DKL(P||Q) 6= DKL(Q||P)

• Where P=Q the KL-divergence is 0:

log
P
Q

= log1 = 0

• The KL- divergence is always a positive number.

Now we can go back to the VAE. The encoder part is represented by a neural
network with parameters w, trained to approximate the latent distribution qφ. In
other words, this neural network will find, from all the training examples x, the
respective Gaussian parameters for the latent vector. So, more formally:

q(z) = q̂w(z|x) ≈ qφ(z|x)

As we have seen before in equation 2.1 it is not possible to use directly that formula.
We need to find another way to define the log pθ(x):

log pθ(x) = Eqφ(z|x) [log pθ(x)]

Now we apply the Bayes’s theorem:

pθ(x) =
pθ(x|z)pθ(z)

pθ(z|x)
=

pθ(x, z)
pθ(z|x)

and substitute the pθ(x):

log pθ(x) = Eqφ(z|x)

[
log
(

pθ(x, z)
pθ(z|x)

)]
now we multiply by a constant qφ(z|x) (the distribution of the encoder):

log pθ(x) = Eqφ(z|x)

[
log
(

pθ(x, z)
qφ(z|x)

qφ(z|x)
pθ(z|x)

)]
.

next we decompose the expected value:

log pθ(x) = Eqφ(z|x)

[
log
(

pθ(x, z)
qφ(z|x)

)]
+ Eqφ(z|x)

[
log
(

qφ(z|x)
pθ(z|x)

)]
.

We can rewrite the second term as the KL-divergence between qφ e pθ:

Eqφ(z|x)

[
log
(

qφ(z|x)
pθ(z|x)

)]
= DKL

(
qφ(z|x)||pθ(z|x)

)
.

12

CHAPTER 2. FOUNDAMENTALS OF MACHINE LEARNING

Now we focus on the first term:

Eqφ(z|x)

[
log
(

pθ(x, z)
qφ(z|x)

)]
we rewrite the joint probability as a conditional probability:

Eqφ(z|x)

[
log
(

pθ(x|z)pθ(z)
qφ(z|x)

)]
we apply the property of logarithms:

Eqφ(z|x) [log pθ(x|z)]−Eqφ(z|x) log
(

qφ(z|x)
pθ(z)

)
we rewrite the second element as a KL-divergence

Eqφ(z|x) [log pθ(x|z)]− DKL(qφ(z|x)||pθ(z))

Now we can rewrite the entire formula as:

logpθ
(x) = Eqφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸

=Reconstruction error

−DKL(qφ(z|x)||pθ(z))︸ ︷︷ ︸
=First regularization term

+ DKL(qφ(z|x)||pθ(z|x))︸ ︷︷ ︸
=Second regularization term

Let us now examine all the components of the formula one by one.
Let’s start with the first regularization term. It represents the similarity between

the encoder and the latent distribution. Since both are Gaussians it is possible to
calculate the KL in a closed form.

KL(p||q) = 1
2

[
log

Σ2

Σ1
− d + tr(Σ−1

2 Σ1) + (µ2 − µ1)
TΣ−1

2 (µ2 − µ1)

]
The second regularization term instead, represents the similarity between the en-
coder and the true posterior p(z|x) but it is not possible to calculate it.

We know that the KL divergence is always positive, so we can ignore the second
regularization term and obtain a computable lower bound of the log pθ(x) that is
called Expected Lower BOund (ELBO).

Lastly, we need to find a way to calculate the Reconstruction error term. This
term is the decoder’s contribution to the final result: the ability to rebuild x given the
latent vector z. We can approximate it through the sampling and SGD optimization,
but we need to introduce a little trick before, called "the reparametrization trick."

We divide the training time into two-phase: forward propagation and backprop-
agation.

In the forward phase, the encoder produces the parameters for the latent distri-
bution from the given input. From this distribution, the latent vector is sampled
and given to the decoder. The decoder uses this vector to recreate the original input.

13

CHAPTER 2. FOUNDAMENTALS OF MACHINE LEARNING

The difference between the decoder’s output and the original input is the error of
the VAE, and it must be backpropagated for all the computational graph.

In the backpropagation phase, the error passes through the decoder but fails to
reach the encoder. That is because the sampling of z is a non-continuous and a non-
differentiable operation; it has no gradient. So we need to make deterministic the
choice of z but to keep stochasticity by applying the reparametrization trick.

Figure 2.7: Illustration of the reparameterization trick.

This method consists of adding a new parameter called ε that is randomly sam-
pled, but that is independent of encoder parameters φ.

ε ∼ N (0, 1)

Since we cannot directly backpropagate the gradients through the vector z because
of its randomness, we re-parameterizing this variable z as deterministic and differ-
entiable.

Now the latent vector is no more sampled but computed:

z = µφ(x) + εσφ(x)

The expectations can be rewritten in terms of ε:

Eqφ(z|x)[f (z)] = Ep(ε)[f (z)]

where z = g(ε, φ, x). Finally it is possible to calculate ∇φg(φ, x, ε)

14

CHAPTER 2. FOUNDAMENTALS OF MACHINE LEARNING

Figure 2.8: A training-time variational autoencoder implemented as a feedforward
neural network, where P(X|z) is Gaussian. Left is without the “reparameterization
trick”, and right is with it. Image from [20].

2.4 Reinforcement Learning

In the reinforcement learning scenario the learner is an agent in an environment.
The agent that does not know the environment dynamics, what its purpose is, and
obviously how to achieve it. However, it can choose an action and perform it, and
then it will receive a feedback signal that it will use to understand if it was a good
or bad action.

There are infinite possible environments, and for each of them, there are infinite
possible objectives. Therefore it is necessary to build a method capable of learning
in a given environment without any supervision. The agent’s objective function is
independent of the environment and it is universal, so it is always the same. Each
agent maximizes the feedback signal and indirectly, in doing so, solves the environ-
ment. The feedback signal is built in such a way that, maximizing it, will lead to
resolving the environment.

Reinforcement learning also differs from unsupervised learning because while
the first one is about to maximize a reward signal, the second one is about finding
the hidden structure in the collection of unlabeled data. In the following chapter we
explain in more detail the reinforcement learning theory with an explanation of the
mathematical preliminaries associated with it.

15

Chapter 3

Elements of Reinforcement Learning

In this section, we introduce the basic theoretical concept of reinforcement learning
and the mathematical preliminaries associated with it. In particular, we start from
the formalism of MDP and then see as an example one of the first simple approaches
to resolution. For further details, refer to chapter 3,4,5,6 of Reinforcement Learning:
An Introduction [21]

3.1 Markov Decision Process

In the Reinforcement Learning context, there is an agent that learns how to achieve
its goal directly by interaction with the environment.

Markov Decision Processes formally describe both the environment and the
agent. To understand the MDP is necessary to introduce some concepts like Stochas-
tic Variable, Stochastic Process, Markov Chain.

3.1.1 Markov Chain

We start introducing the Stochastic Variable and Stochastic Process.
Stochastic Variable: is a variable, usually expressed with a capital letter, whose

possible values depend on a particular outcome of a random phenomenon. They
are also known as Random Variables and, they can be Discrete orContinuous.

Stochastic Process: is a collection of discrete stochastic variables each one in-
dexed by a value that represents a step of time in the process. This index is usually
expressed like time step t.

So in a particular time step t, the process is in one of all its possible states math-
ematically expressed by a stochastic variable. More formally st ∈ S where S =
{s0, s1, ..., sm}. The set of all possible states is called State Space.

The evolution of the system during the time is represented by a progression of
the index from the current variable st to the next one st+1.

The rule by which the index progress is called Transition Function, and it is not
deterministic, so the process produces different sequences of states each time it is

16

CHAPTER 3. ELEMENTS OF REINFORCEMENT LEARNING

run, even if it always starts from the same initial state. The value of a variable can
influence that of the variables that follow it. Therefore the progression of the states
depends on the whole sequence starting from the initial state. More formally this
rule is expressed with a probability distribution:

P[St+1|S1, ..., St]

A Markov Chain is a particular case of stochastic process that respects the Markov
Property: "The future is independent of the past given the present".

This means that each state must capture all the relevant information from the
environment at that moment, so when you have the state, you could throw away
all the history. In other words, thanks to the Markov Assumption the transition
function is conditionally independent from the past state if the current state are
given.

More formally we say:

P[St+1|St] = P[St+1|S1, ..., St]

3.1.2 Markov Decision Process

A Markov Decision Process (MDP) is an extension of the Markov Chain that includes
an agent that performs actions in the process, that in this context is called Environ-
ment.

The agent influences the evolution of the environment with its actions. So the
state transition probability change including also the actions: P(s, a, s

′
) = [St+1 =

s′|St = s, At = a]. The purpose of the agent is to led the evolution of the environ-
ment to a particular set of states, called Goal States. At every time step, the agent
makes a decision on which is the best action to take. The process by which the agent
chooses an action from the given state is represented by with a function, called Pol-
icy Function. It is represented by a probability distribution associated with every
state in input. More formally we say: an agent follows the policy π for every time
step t and for each st ∈ S it executes the action at ∈ A according to the probability
π(a|s). To guide the agent’s decision process we assign a reward signal (a real num-
ber rt ∈ R) to every action that it executes. Having this reward signal we can say if
a state is more desirable then one other.

The agent receives the initial state of the environment and uses it to choose an
action. Then, the environment evolves its state into a new one depending on both
the current state and the agent’s action. At this point, the agent receives two inputs:
the new state and the reward signal. It uses the reward signal to improve its own
decision method and the new state to choose the next action.

This process is repeated iteratively until a final state is reached.
Every step of this process is called Transition: st, at, rt, st+1. The list of all transi-

tion from initial state to the final one is called Episode.
There are some particular classes of MDP that are called Infinite MDP in which

do not exist a final state, but the construction of the reward function is still possible.

17

CHAPTER 3. ELEMENTS OF REINFORCEMENT LEARNING

Figure 3.1: The agent-environment interaction in a Markov decision process. (Image
source: Sec. 3.1 Sutton and Barto (2017) [21]

The agent can use the reward signal to know what is a good move and what it
isn’t. With this knowledge, it can learn the best strategies to achieve its goal. As-
suming to be in a particular time step t of a finite MDP the definition of cumulative
reward, from step t to the final step T, is:

Gt = Rt + Rt+1 + Rt+2 + ... + Rt+T

So the objective of the reinforcement learning is to find the parameters θ∗ to the pol-
icy function π∗ that maximizes the expected cumulative reward of all the episodes.

π∗ = argmaxθEτ∼πθ

[
T

∑
t

r(st, at)

]
The reward value is often presented with the Discount Factor, generally ex-

pressed with the symbol γ ∈ [0, 1]. The purpose of the discount factor is to de-
fine the priority that the agent assigns to the future expected reward with respect to
the immediate ones. So the formula of the discounted expected cumulative reward
becomes:

Gt = Rt + γRt+1 + γ2Rt+2 + ... =
∞

∑
k=0

γkRt+k

Notice that the lower the gamma factor is and the more the agent will prefer the
immediate reward than the long term values.

This value not only helps to represent the uncertainty about the future but it
is also mathematically convenient because it can be used to end up with a finite
number also in case of infinite sequence of states (using the sum of infinite series) if
γ < 1. So it can be very useful for Infinite MDP.

To conclude a MDP is a tuple defined by < S ,A,P ,R,Z , γ >:

• a finite set of states S

• an initial state s0

• a finite set of actions A

18

CHAPTER 3. ELEMENTS OF REINFORCEMENT LEARNING

• a state transition probability P(s, a, s
′
) = [St+1 = s′|St = s, At = a]

• R is a reward function,R(s, a)

• γ is a discount factor γ ∈ [0, 1].

3.1.3 Partially Observable Markov Decision Process

A Partially Observable Markov Decision Process, also called POMDP, is a particular
case of MDP in which the agent hasn’t direct access to the full states but for each
time step,it makes an observation that depends on it.

A POMDP in defined by a tuple < S ,A,P ,R,Z , γ >, so respect to the classic
MDP it required also:

• a finite set of observations O

• an observation function, Z(o, a, s
′
) = P

[
Ot+1 = o|St+1 = s

′
, At = a

]
In POMDP the transition is composed by the action, the reward and the obser-

vation of the environment. We define the entire sequence, from initial state to some
time step t, as history Ht:

Ht = O0, A0, R0, O1, . . . , Ot−1, At−1, Rt−1, Ot

During the history, the agent formulates hypothesis on what is the effective state
behind each observation. To build this hypothesis, that is called belief state, it uses
the history.

So, more formally, a belief state b(h) is a probability distribution over states, con-
ditioned on the history h:

b(h) =
(

P
[
St = s1|Ht = h

]
, ..., P [St = sn|Ht = h]

)
With the belief state the Markovian Assumption is no more valid.

3.2 Solving Markov Decision Process

In this section we introduce the two principal approach to solve an MDP, that are
called prediction problem, used when a fixed policy is given and control problem used
when there are no policy available.

3.2.1 Prediction Problem

The prediction problem consist of evaluating a given policy function in an unknown
MDP. The metric used to evaluate a policy is the value function.

For every state the value function estimates how good it is for the agent that
follows its given policy in the environment. This value is a scalar number and it is

19

CHAPTER 3. ELEMENTS OF REINFORCEMENT LEARNING

expressed in terms of the expected cumulative discounted reward from the given
state to the end. So, more formally:

vπ(s) = Eπ [Gt|St = s] .

To explain how it works we first need to define a partial ordering over policies.
One policy is better than another when it produces a greater value for each state.
More formally:

π > π
′∀s ∈ S ⇐⇒ vπ(s) > v′π(s) ∀s ∈ S

So also the definition of the best policy is related to the value function:

π∗ > π ∀π (∀s ∈ S) ⇐⇒ v∗(s) > vπ(s) ∀s ∈ S

From Sutton’s book [21], in chapter 3.6, we can read: "there is always at least one
policy that is better than or equal to all the other policies. This is an optimal policy."
Starting from the definition of the value function, it is possible to derive the iterative
formulation for any arbitrary state.

vπ(s) = Eπ [Gt|St = s] (3.1)
vπ(s) = Eπ [Rt + γGt+1|St = s] (3.2)

vπ(s) = ∑
a

π(a|s)∑
s′

∑
r

p(s
′
, r|s, a)

[
r + γEπ

[
Gt+1|St+1 = s

′
]]

(3.3)

vπ(s) = ∑
a

π(a|s)∑
s′ ,r

p(s
′
, r|s, a)

[
r + γvπ(s

′
)
]

(3.4)

The equation 3.4 is the Bellman equation for Vπ(s) and it shows the relation be-
tween the value of one state and the value of its successor. "It states that the value of
the start state must equal the (discounted) value of the expected next state, plus the
reward expected along the way" [21]. From there, it is possible to derive the Bellman
Optimality Equation used to calculate the optimal value function v∗. Note that this
equation can be written independently to any particular policy. Intuitively, the best
policy must suggest the action with the highest expected return from the given state.
Therefore the optimal policy evaluation consist of finding the action that maximizes
the value function of the successor state plus the expected reward obtained from the
actual states to the next one s’.

v∗(s) = max
a ∑

s′ ,r

p(s
′
, r|s, a)

[
r + γv∗(s

′
)
]

3.2.2 Control Problem

The control problem consist of solving an MDP without a given policy. The metric
used to build an effective policy is the Q-Value function.

The q-value, defined qπ(s, a) is the expected discounted return after executing
the action a from π(s|a) and then keeping to follow the actions from the policy π. It

20

CHAPTER 3. ELEMENTS OF REINFORCEMENT LEARNING

is also called action-value function. More formally, we define the action value function
for the policy π, qπ, as follows:

qπ(s, a) .
= Eπ [Gt|St = s, At = a] (3.5)

qπ(s, a) .
= Eπ

[
∞

∑
k=0

γkRt+k|St = s, At = a

]
(3.6)

The optimal Q-Value can be defined as:

q∗(s, a) = max
a∈A(s)

qπ∗(s, a), ∀s ∈ S, a ∈ A

It is also possible to write the q∗ in terms of v∗ as follows:

q∗(s, a) = E [Rt+1 + γv∗(St+1)|St = s, At = a] (3.7)

From the last equation is possible to derive the Bellman optimality equation for q∗.
Starting from v∗:

v∗(s) = max
a∈A(s)

qπ ∗ (s, a)

v∗(s) =max
a

Eπ∗ [Gt|St = s, At = a]

v∗(s) =max
a

Eπ∗ [Rt + γGt+1|St = s, At = a]

v∗(s) =max
a

Eπ∗ [Rt + γv(St+1)|St = s, At = a]

Now we can apply the previous formula:

q∗(s, a) =E
[

Rt+1 + γ max
a′

q∗(St+1, a
′
)|St = s, At = a

]
(3.8)

q∗(s, a) =∑
s′ ,r

p(s
′
, r|s, a)

[
r + γ max

a′
q∗(s

′
, a
′
)

]
(3.9)

Starting from a given state, the agent must find the action that maximizes q∗(s, a)
without the knowledge of the possible successor states or the dynamics of the envi-
ronment.

It’s time to use all the information introduced in this chapter to show how to
build the policy function. This method is called Generalized Policy Iteration (GPI)
and it is the combination of two interacting processes called Policy Evaluation and
Policy Improvement.

The first process makes the value function consistent with the current policy
computing the Vπ.

Vπ(s) =Eπ

[
r + γVπ(s

′
)|St = s

]
21

CHAPTER 3. ELEMENTS OF REINFORCEMENT LEARNING

Figure 3.2: The GPI schema. (Image source: Sec. 4.6 Sutton and Barto (2017) [21]

The second process use the current value function to greedily improve the policy:

Qπ(s, a) =E [Rt+1 + γVπ(St+1)|St = s, At = a]

As said before, the GPI algorithm iterate over these two processes until it reaches
convergence.

π0
evaluation−−−−−→ Vπ0

improve−−−−→ π1
evaluation−−−−−→ Vπ1

improve−−−−→ π2
evaluation−−−−−→ . . .

improve−−−−→ π∗
evaluation−−−−−→ V∗

3.3 Taxonomy of Reinforcement Learning Algorithms

Since the dynamics of the environment is not know, it is impossible to calculate
directly the value or q-value function. For this reason there are two methods to
approximate them, that are called Monte Carlo Methods (MC) and Temporal Dif-
ference Methods (TD).

Monte Carlo methods are based on the idea of repeated random sampling to
estimate a distribution function. In this context, the function to approximate is the
value functions need to the GPI schema explained in previous section. In order
to compute the policy evaluation step, the agent performs several rollouts of the
current policy accumulating the reward and the visited states of the entire episodes.

To accomplish the policy evaluation phase, the agent interacts with the envi-
ronment accumulating experience. Every time it visits a state, it takes note of the
number of times it encounters that state (N(n)) and the cumulative reward obtained

22

CHAPTER 3. ELEMENTS OF REINFORCEMENT LEARNING

in that episode from that state to the end (C(n)).

N(s) ← N(s) + 1

C(s) ← C(s) + Gt

Now having the number of times the agent has visited a state and the cumulative
total reward, it is possible to approximate the value function for each state by calcu-
lating the mean return.

V(s) ← C(s)/N(s)

In the policy improvement step the agent chooses the action greedily with respect
to the value function.

π
′
(s) = max

a∈A
Q(s, a)

These two steps are iteratively repeated, and it can be shown that using the law of
large numbers, it is possible to prove that the algorithm converges to the optimal
policy and the optimal value function.

V(s) → vπ(s) as N(s)→ ∞

The problem with the Monte Carlo method is that it requires to finish the entire
episode before to update the value function.

Temporal Difference (TD) methods are also based on the idea of GPI but differ
from MC methods in the Policy Evaluation phase. Instead of getting to the end of
the episode, these methods update the value function step by step. These methods
use the current temporal estimates of the state value function, rather than relying
on the complete return as the MC methods. This approach is called bootstrapping.
To obtain a better approximation the algorithm recalculate the value of every state
it visits and it adds to it the reward occured in that transiction, forming the so called
TD target. The TD target is a slightly better approximation of the state value for that
state, so the approximation must move in that direction. To move the approximation
it’s necessary to calculate di difference between the old estimation and the new one,
producing the TD error. The entity of the update is controlled by a hyperparameter
called learning rate α. So, this processes is repeated at each time step, and the value
function is continually update. This is called online update. The formula for the
value function is:

V(St)← V(St) + α(Rt+1 + γV(St+1)−V(St))

The formula for the q-value function is:

Q(St, At)← Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At)) (3.10)

These methods are referred to as Tabular Methods because the temporal results are
cached in a table.

The most famous algorithm in this category is Q-learning. [22]. The formula
used in this algorithm to update the Q-value estimate is the equation 3.8 that we

23

CHAPTER 3. ELEMENTS OF REINFORCEMENT LEARNING

already presented before:

q∗(s, a) =E
[

Rt+1 + γmax
a′

q∗
(

St+1, a
′
)
|St = s, At = a

]

For the online update version of this formula the expectation is removed, so the
formula became:

Q(s, a) =R(s, a) + γ

(
max

a′
Q(s′, a′)

)
Applying this TD target to the generic version of the TD formula:

Q(St, At)← Q(St, At) + α(Rt+1 + γ max
a∈A

Q(St+1, a)−Q(St, At))

The formula 3.10 the Q-learning formula add a max operation, this simplifies the
algorithm approximating the optimal action-value function, q∗, directly.

Algorithm 1 Q-learning (off-policy TD control) for estimating π ≈ π∗
Initialize Q(s, a), ∀s ∈ S , a ∈ A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ε− greedy)
Take Action A, observeR, S ′
Q(S, A)← Q(S, A) + α [R + γ maxa Q (S′, a)−Q(S, A)]
S ← S ′

until S is terminal

Both the MC and TD methods are also Model-Free algorithms because they
solve the MDP, calculating the value or q-value function, without knowing the en-
vironment dynamics.

However, an agent could also learn the transition probability function and the
reward function and use them to accelerate the learning process or build a long
term plan before acting. In that case, we talk about the Model-Based algorithms in
which the model is learned, not given.

Another classification is based on how the methods find the best action to take.
The option are Value function based or Policy function based. All the methods
presented so far are value based: these methods learn the value function and then
use it to choose the action with the best result. The policy function based, instead,
search directly in the policy parameters space and ends up with the best policy.

Finally there is the Actor-Critic method that build both the value and the policy
functions.

24

CHAPTER 3. ELEMENTS OF REINFORCEMENT LEARNING

This method is composed by two element: the actor and the critic. The Actor
is the Policy function and decides which action to take and the Critic is the Value
function approximation and tells the actor how good its choice was and how to
adjust it.

The critic updates value function parameters and the Actor update policy pa-
rameter using the value function suggested by the critic.

Figure 3.3: The actor-critic architecture. [Image source: Sec. 6.6 Sutton and Barto
(2017) [21]]

In the next chapter, we will introduce an actor-critic method called DDPG that
will be use it to do the experiments. In chapter 6, we compare the results obtained
with DDPG and the results obtained with a model-based algorithm called PlaNet.

25

Chapter 4

Model Free Reinforcement Learning

4.1 Deep Reinforcement Learning

4.1.1 Deep Q Network

As we so in chapter 3, to solve an unknown MDP, we use the Bellman equation 3.7.
We want to approximate the function of the optimal value iteratively until the algo-
rithms converge, but to do this, we need to maintain the experience gained in the
previous iterations. Originally, all the temporary q-value estimates were stored in a
tabular, but this kind of solution worked well only with toy problems. The solution
was the use of a function approximator instead of tabular methods. Initially, they
tried whit a linear function approximation, but also that solution is not able to scale.
The first, scalable and successfully, use of neural networks as a function approxima-
tor of Q-value was introduced in 2015 by Deepmind [23]. The solution proposed
in this work is to build a Q-network and train it by adjusting the parameters θ to
reduce the mean-squared error in the Bellman equation.

This network, called Q-Network, takes an observation as input and then give in
output, with a single forward pass, the predicted Q-values for all possible actions.

Before this solution, the use of neural networks in the framework of reinforce-
ment learning was known to be an unstable method. This instability has several
causes: the correlation between transactions, the change in the distribution of data
caused by the change in policy. To address these problems, they introduce two vari-
ants of the q-learning algorithm.

An Experience Buffer Replay was introduced to remove correlations in the ob-
servation sequence and smooth over changes in the data distribution.

So, at each time step t, the agent store its experience et = (st, at, rt, st+1) in a
dataset Dt = e1, ..., et. At the learning time it the agent draw a random batch of
experiences from the dataset and apply a Q-learning update.

The second variant is the use a second neural network called Target Network
to perform a target estimate in the Q-update. So the Q-network is trained to reach
the target network predictions that use an old set of weight. So, every C updates
the Q-networks weights are cloned to generate a better set of weights for the Target-
networks. This solution makes divergence or oscillations much more unlikely.

26

CHAPTER 4. MODEL FREE REINFORCEMENT LEARNING

This algorithm was tested on a set of environments that replicated the games
from an old console called atari Atari 2600. Reinforcement learning was usually
applied to domains in which useful features were being crafted in low-dimensional
state space. The DQN instead, was trained directly from high-dimensional inputs
that were the raw frames of the games.

This choice led to a problem, one single frame does not contain enough infor-
mation to be an effective state of an MDP since it violates the Markov property. In
fact, having one single frame is not enough to predict the next one (for example, you
cannot guess the position of an object in the next frame if you do not know its speed
and direction). So, in that case, the environment is not an MDP but is a POMDP. To
give to the network enough information they stacked more frames into one single
input.

Using the frames as input allow the algorithm to be more general. In fact, DQN
was able to achieve human-level performance over 49 different games using the
same network architecture and hyperparameters.

Algorithm 2 Deep Q-learning with Experience Replay

initialize replay memory D to capacity N
initialize action-value function Q with random weights θ
initialize target action-value function Q̂ with weights θ− = θ
for episode=1,M do

Inizialize sequence s1=x1 and preprocessed sequence φ1 = φ(s1)
for t = 1, T do

With probability ε select a random action at
otherwise select at = argmaxaQ(φ(st), a; θ)
Execute action at in emulator and observe reward rt and image xt+1
Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample random minibatch of transitions (φj, aj, rj, φt+1) from D
if episode terminates at step j + 1 then

set yj = rj
else

set yj = rj + γ max′aQ̂
(
φj+1, a′; θ−

)
end if
Perform a gradient descent step on

(
yj −Q

(
φj, aj, θ

))2

with respect to the network parameters θ
Every C steps reset Q̂ = Q

end for
end for

4.2 Policy Gradient

In chapter 3.3 we have introduced the difference between Value function based
methods and Policy function. DQN is the most famous example of an algorithm

27

CHAPTER 4. MODEL FREE REINFORCEMENT LEARNING

based on Value function. The Policy function methods instead, do no approximate
a value function but learn directly the policy as π(a|s; θ). The objective is to maxi-
mize the expected reward cumulated during the episode. We now introduce REIN-
FORCE, one of the algorithms based on this method, also called Monte-Carlo policy
gradient.

4.2.1 REINFORCE algorithm

As we said we want to maximize the expected cumulative reward

θ∗ = argmax
θ

Eπ θ

[
∑

t
R(st, at)

]
.

Since we work on a set of episodes, define τ as an episode and we set our objective
function as the total reward accumulated over all the episodes:

J(θ) = ∑
τ

π(τ; θ)R(τ)

Every time that we change the parameters we move the distribution and so also the
states that the agent visits. We need to find an objective that is independent from θ
otherwise it is not possible to find the ∇θ perform a gradient ascent step.

∇θ J(θ) = ∇θ ∑
τ

π(τ; θ)R(τ)

∇θ J(θ) = ∑
τ

∇θπ(τ; θ)R(τ)

Now we need to apply the likelihood ratio trick:

∇x
x

= ∇logx

So we first multiply∇θπ(τ; θ) by the constant π(τ,θ)
π(τ,θ) and then we can apply the trick:

∇θπ(τ; θ)π(τ, θ)

π(τ, θ)
= ∇(log(τ; θ))π(τ, θ)

Now we can rewrite the complete formula:

∇θ J(θ) = ∑
τ

π(τ, θ)∇(log(τ; θ))R(τ)

We rewrite the formula with the Expected value form:

∇θ J(θ) = Eπ [∇θ(logπ(τ; θ))R(τ)] (4.1)

28

CHAPTER 4. MODEL FREE REINFORCEMENT LEARNING

Since R(τ) is just a scalar representing the total reward collected over all the episodes,
we now focus mainly on the log term, in order to understand how to calculate it.
First, we examine the meaning of π(τ, θ):

π(τ, θ) = pθ(s1, a1, ..., st, at)

pθ(s1, a1, ..., st, at) = p(s1)
T

∏
t=1

πθ(at|st)p(st+1|st, at)

if we apply the logarithm to the policy probability we obtain:

log πθ(τ) = log p(s1) +
T

∑
t=1

log πθ(at|st) + log p(st+1|st, at)

and now if we apply the gradient:

∇θ log πθ(τ) = ∇θ

(
log p(s1) +

T

∑
t=1

log πθ(at|st) + log p(st+1|st, at)

)
Since we are looking for the gradient respect to θ we can eliminate all the terms the
not depends on θ.

∇θ log πθ(τ) = ∇θ

(
T

∑
t=1

log πθ(at|st)

)
So if we put back ∇θ log πθ(τ) to the objective 4.1 we obtain:

∇θ J(θ) = Eπ

[
∇θ

(
T

∑
t=1

log πθ(at|st)

)
R(τ)

]
.

Lastly we can put the derivative inside the summation and rewrite the expected
value:

∇θ J(θ) =
1
n

N

∑
i=1

(
T

∑
t=1
∇θ log πθ(at|st)

)(
T

∑
t=1

R(si,t, ai,t

)
.

So the final update rule formula is:

θ ← θ + α∇θ J(θ)

4.3 Actor-Critic:

So far we have seen a Value function method (DQN) and a Policy function method
(REINFORCE). Reinforce is very unstable while DQN is not compatible with en-
vironments with continuous action space because of its max operator over all the
possible moves for each step. So now we see an example of a new combination of
the two, an algorithm that is based on Actor-Critic architecture from In chapter 3.3.
This algorithm is called Deep Deterministic Policy Gradient (DDPG) [10].

29

CHAPTER 4. MODEL FREE REINFORCEMENT LEARNING

4.3.1 Deep Deterministic Policy Gradient

Ddpg is an off-policy algorithm that can be used in continuous action spaces. The
learning algorithm iterates between two phases: learning the Q-function from the
data and use that value to learn a policy.

The Q-leaning phase: In this phase the objective is to approximate the Bellman
equation:

Q∗(s, a) = E
s′∼P

[
r(s, a) + γ max

a′
Q∗
(
s′, a′

)]
And we use the data collected during the training to approximate it. So having an
a neural network Qφ(s, a) with parameter φ as approximator and a buffer D that
contains all the transitions (s, a, r, s′, d) we can set up the mean-squared Bellman
error.

L(φ,D) = E
(s,a,r,s′,d)∼D

[(
Qφ(s, a)−

(
r + γ(1− d)max

a′
Qφ

(
s′, a′

)))2
]

As we already saw with dqn, also with ddpg a target network is involved to stabilize
the training.

L(φ,D) = E
(s,a,r,s′,d)∼D

[(
Qφ(s, a)−

(
r + γ(1− d)max

a′
Qφtarg

(
s′, a′

)))2
]

Now, how calculate maxa′ Qφtarg (s′, a′) if we are in a continuous action space envi-
ronment?

The policy learning phase: Now we have a Q value Q(s, a) and we want to find
a deterministic policy µθ(s) which gives the action a that maximize Qφ (s, a).

But how to learn this policy? We know that the action space is continuous and
we assume that the Q-function is differentiable with respect to action, so we can
perform a gradient ascent step to find the best parameter to the policy.

max
θ

E
s∼D

[
Qφ (s, µθ(s))

]
Because the policy is deterministic, during the training, we add some random Gaus-
sian noise to let the agent to explore better the environment and to collect more
varied data.

30

CHAPTER 4. MODEL FREE REINFORCEMENT LEARNING

Figure 4.1: A visual representation of the DDPG architecture. The Q-values is used
only at training time.

31

CHAPTER 4. MODEL FREE REINFORCEMENT LEARNING

Algorithm 3 Deep Deterministic Policy Gradient

Input: initial policy parameters θ, Q-function parameters φ, empty replay buffer
D.
Set target parameters equal to main parameters θtarg ← θ, φtarg ← φ
for episode=1,M do

Observe state s and select action a = clip
(
µθ(s) + ε, aLow, aHigh

)
, where ε ∼

N
Execute a in the environment
Observe next state s’,reward r, and done signal d to indicate whether s’ is

terminal
Store (s,a,r,s’,d) in replay buffer D
If s’ is terminal state reset the environment state.
if it’s time to update then

for however many updates do
Randomly sample a batch of transitions, B = (s, a, r, s′, d) from D
Compute targets
y (r, s′, d) = r + γ(1− d)Qφtarg

(
s′, µθtarg (s′)

)
Update Q-function by one step of gradient descent using
∇φ

1
|B| ∑(s,a,r,s′,d)∈B

(
Qφ(s, a)− y (r, s′, d)

)2

update policy by one step of gradient ascent using:
∇θ

1
|B| ∑s∈B Qφ (s, µθ(s))

Update target networks with
φtarg ← ρφtarg + (1− ρ)φ
θtarg ← ρθtarg + (1− ρ)θ

end for
end if

end for

32

Chapter 5

Model Based Reinforcement Learning

In this chapter we focus on Model Based approach, explaining how in works theo-
retically, why is useful and how could use it to create better agents. Then we present
some significant proposal from the literature and lastly we introduce the model used
for this thesis.

5.1 Model Based Reinforcement Learning

As we said in chapter 3 in the reinforcement setting, there is an environment in a
specific state st that receives an action at from an agent. After receiving this action,
the environment update its state using the transition probability function st+1 =
f (st, at) and calculates also the correspective reward rt+1 = r (st, at) . The agent
takes the new observation from the environment and uses that to choose the next
action to take at = π(at|ot). Recall that in an MDP on observation correspond to the
state, so ot = st, while in an POMDP the observation is derivative of the state, so
ot = o(st).

In the model-free setting, the agent will learn a policy that returns the best action
directly to take in that state in order to maximize the expected cumulative reward.
In the model-based setting, instead, the agent will learn to model the dynamics of
the environment (forward model) by approximating the transition function and the
reward function. So in case of MDP the model could be: st+1 = fθ(st, at). Instead
if the environment is a POMDP the model need to use also the old observation and
actions, in order to predict a new one. ot+1 = fθ(o0, a0, ..., ot, at)

Once the agent is able to approximate the environment in its head, it is also able
to simulate actions and predicts the possible consequences.

To be more specific, the agent plan a sequence of H (that stands for Horizon) ac-
tions {at, . . . , at+H}, and then unroll the learned model H step into the future based
on those actions. Now the agent can compute the objective function. G (at, . . . , at+H) =

E
[
∑t+H

τ=t r (oτ, aτ)
]

to evaluate the current plan and performs some sort of optimiza-
tion to find the best possible plan (often a genetic algorithm is used to this purpose)
at, . . . , at+H = arg max G (at, . . . , at+H). This process is called trajectory optimiza-
tion.

33

CHAPTER 5. MODEL BASED REINFORCEMENT LEARNING

5.2 Planet

Planet is a new algorithm published in 2019 from the research team in Google AI
[9]. In this paper, the agent is able to learn environment dynamics only through the
observation and then can use this model to plan what action to take for each step.
In order to achieve this task, the agent must solve three problems:

1. understanding the observation: capture the useful information contained in
each frame and maintain them in memory

2. understanding the environment dynamics: be able to predict the next observa-
tion and the next reward having only the current observation and the current
action as input

3. using its prediction to plan what action to take.

5.2.1 RSSM

Since the planning requires a considerable amount of predictions at every time step,
the researchers decided to work in latent space. In other words, they do not use
the entire frame to predict the next one, but they encode all the information in a
vector obtained from neural networks, called latent vector. This advantage in terms
of computational cost leads to a disadvantage for the agent that now has two jobs:
first, it has to build a visual understanding of the environment and second, it has
to find a way to solve the task. To be more specific, they use a convolutional neural
network to capture all the spatial information from the image, and a GRU network
(a simplified version of LSTM) to capture the temporal information across different
time steps. Then they use both information to create the latent vector.

Now it is time to enter in technical details: We now considering sequences like
{ot, at, rt}T

t=1 where the index t is used for the time step, ot is the environment obser-
vation for the current time step, at and rt the current action and reward. The Planet
model is composed of three sub models:

Transition model: st ∼ p (st | st−1, at−1)

Observation model: ot ∼ p (ot | st)

Reward model: rt ∼ p (rt | st)

The transition model has the job of produce the current latent state by using the pre-
vious latent state and the current action. Then the observation model and the reward
model will use it to reconstruct the observation and predict the reward obtained by
the execution of at in st.

The observation model is Gaussian with a mean parameterized by a deconvolu-
tional neural network and identity covariance. The reward model is a scalar Gaus-
sian with a mean parameterized by a feed-forward neural network and unit vari-
ance. In both cases, the loss is calculated through mean square error. The transition
model can be viewed as a sequential VAE that is a convolutional variational autoen-
coder that receive in input an observation ot and an action at. The aim of the encoder

34

CHAPTER 5. MODEL BASED REINFORCEMENT LEARNING

is to learn an approximation of the state posterior q (s1:T | o1:T, a1:T) from past obser-
vation and actions. This state posterior will contain all the useful information about
the current state to allow the decoder (introduced above as the observation model)
to uses this state st to reconstruct the observation ot completely. When it produces
the current posterior state, it needs to use also the information of the precedent state
that is served as input in addition to the observation and action, and this is why
it is called recurrent VAE. So the transition model approximate the true state poste-
rior with ∏T

t=1 q (st | st−1, at−1, ot). We can find the true parameters of this Gaussian
at training time because we have all the information necessary to calculate the loss
value througth mean squared error. Another important point is that at training time
we can always sample a batch of transitions from the experience replay and provide
the current observation for each time step. At inference time instead, we only have
the observation for the current step, but if we want to predict the posterior states of
different steps in the future, we cannot provide the respective observation.

Intuitively if we ask the model to predict the next observations, it cannot require
it as input. For this reason we use this model at training time to find the correct
parameter of the posterior state and in inference time we use another model that
not use the information about the current observation ot but it only require st−1 and
at−1 p(st|st−1, at−1). This new model p is trained to stay close to q via kl-divergence.
KL [q (st | st−1, at−1, ot) ||p (st | st−1, at−1)].

Unfortunately, the only st−1 is not enough to maintain in memory all the useful
information. The form of stochastic transition, in fact, not able to maintain infor-
mation across multiple steps. For this reason, they also provide the model with a
sequence of activation vectors (ht)

T
t=1 from a GRU network. Combining these two

methods, they create a new model called Recurrent State-Space Model (RSSM).
In RSSM, the internal state is composed of two parts: a stochastic one named st
(sampled from a Gaussian) and a determinist part ht (sampled from GRU). The final
model is similar to the previous one:

Deterministic state model: ht = f (ht−1, st−1, at−1)

Stocastic state model: st ∼ p (st | ht) *
Observation model: ot ∼ p (ot | ht, st)

Reward model: rt ∼ p (rt | ht, st)

*the information over action is already encoded in h

Now at inference time, the model can rely only on ht.
Before moving on to the next paragraph, I left a quick visual recap of the Planet

model.

35

CHAPTER 5. MODEL BASED REINFORCEMENT LEARNING

Figure 5.1: The transition model at inference time. The current frame is encoded
and the RNN produces the current Belief State encoding the current action and the
previous posterior state. The current encoded observation and the Belief State are
combined to produce the Features Vector from where the posterior Gaussian param-
eters are produced. In the last step, the current Posterior state is sampled from the
Gaussian.

36

CHAPTER 5. MODEL BASED REINFORCEMENT LEARNING

Figure 5.2: The current Latent State is produced by the combination of both Belief
State and Posterior State. This Latent State is then used by the Reward Model to
predict the reward and by the Observation Model to reconstruct the current obser-
vation. With these two results we can calculate the mean squared error (by sampling
the original result from the buffer) and backpropagate the loss to train the transition
model.

37

CHAPTER 5. MODEL BASED REINFORCEMENT LEARNING

Figure 5.3: At inference time we have no more the experience replay buffer that
provide us the observation for each step. We only have the observation for the
current step provided by the environment and we have to predict the next for many
steps ahead.

38

CHAPTER 5. MODEL BASED REINFORCEMENT LEARNING

Figure 5.4: We can reuse the Memory model (RNN) used for the transition model at
training time but we need to retrain the Gaussian model. We need a way to obtain
the same parameters used by the model at training time.

Figure 5.5: The loss indicates how much information we lost by approximate the
Gaussian produced at training time with the one used at inference time.

39

CHAPTER 5. MODEL BASED REINFORCEMENT LEARNING

5.2.2 Planning

Now it’s time to use the model for planning. Even if the model that predicts the
future is robust, a perfect prediction over the entire episode is unrealistic. The
more we try to predict in the future, the more the prediction error will accumu-
late, and the more the prediction will diverge to reality. For this reason, the plan-
ning is computed over a short horizon H. They used the Cross-Entropy Method
to perform trajectory optimization. It is a robust method and is proved to be capa-
ble of solving all the tested environments when true dynamics are given. Initially,
the actions vector, that contains all the actions from the current time step t to the
planning horizon H, is sampled from a Gaussian with zero mean and unit variance
at:t+H ∼ Normal

(
µt:t+H, σ2

t:t+H
)
. For each generation, J candidates action vectors

are sampled and evaluated using the transition model and the reward model. The
evaluation is base on how much reward is produced over the time steps. For each
generation, the parameters update of the Gaussian is calculated over the top k ele-
ments of the candidates’ population. Even if the planner has produced a plan over
H time steps when the first action is executed, and the new observation is received,
the planning process is replicated and adapted to the latest information. In other
words, the planning is computed at every step, and only the first planned action is
used. It is still necessary to planning over a horizon longer than one because that
will lead to local optima.

5.3 Cross Entropy Method

The Cross-entropy (CE) method is an EDA (Estimation of Distribution Algorithms)
used in many optimization problems of the form:

w∗ = arg max
w

S(w)

where w is a set o weight, and S is a generic objective function of w. The EDA is
a specific family of Genetic Algorithms that does not work with a single solution
but distributions of possible solutions represented with a covariance matrix Σ. This
covariance matrix is used to defines a multivariate Gaussian function and for sam-
pling the population for the next iteration. Iterations after iterations, the ellipsoid
defined by Σ is moved to the top part of the hill corresponding to the local optimum
θ∗. A each time step the entire population is sampled from the current parame-
ters of the distributions. Next So all the new individuals are evaluated according
to the problem-dependent fitness function (fi)i=1,...,λ. Then the top Ke individuals
(zi)i=1,...,Ke (called elites or candidates) are used to update the distribution parame-
ters (the new mean and variance are calculated over the elites).

40

CHAPTER 5. MODEL BASED REINFORCEMENT LEARNING

µnew =
Ke

∑
i=1

λizi

Σnew =
Ke

∑
i=1

λi (zi − µold) (zi − µold)
T + εI ,

Notice that (λi)i=1,...,Ke are weights assigned to each individual (a common choice
is λi =

1
Ke

. Usually some extra variance ε is added in order to prevent premature
convergence. To be more specific some Gaussian noise is added to each individual
xi that is sampled from the current covariance matrix Σ.

Algorithm 4 Latent planning with CEM
Input: H Planning horizon distance

I Optimization iterations
J Candidates per iteration
K Number of top candidates to fit

q(st|o≤t, a<t) Current state belief
p(st|st−1, at−1) Transition model
p(rt|st) Reward model

Initialize factorized belief over action sequences q (at:t+H)← Normal(0, I).
for optimization iteration i = 1..I

// Evaluate J action sequences from the current belief.
for candidate action sequence j = 1..J

a(j)
t:t+H ∼ q(at:t+H)

s(j)
t:t+H+1 ∼ q(st|o1:t, a1:t−1)∏t+H+1

τ=t+1 p(sτ|sτ−1, a(j)
τ−1)

R(j) = ∑t+H+1
τ=t+1 Ep(rτ|s(j)

τ)
//Re-fit belief to the K best action sequences.
K ← argsort({R(j)}J

j=1)1:K

µt:t+H = 1
K ∑k∈K a(k)t:t+H, σt:t+H = 1

K−1 ∑k∈K |a
(k)
t:t+H − µt:t+H|.

q(at:t+H)← Normal(µt:t+H, σ2
t:t+HI)

return first action mean µt.

5.3.1 Algorithm

Finally, we have all the information to describe the entire flow of the Planet algo-
rithm. Initially, some random episodes (every action is chosen randomly) are exe-
cuted in order to collect some data in the experience replay buffer. Then the main
training loop, which is composed of two procedures called model fitting and data
collection, can begin. The model fitting procedure consists of sampling sequence
chunks from the buffer experience and train the model. The data collection proce-
dure consists of using the model to solve an episode and collect new data. Since the
aim of this procedure is not to solve the environment but collect new data, random
Gaussian noise is added over the action before it is executed to have a better explo-
ration of the environment. This noise is not used when we want to use/evaluate the
model.

41

CHAPTER 5. MODEL BASED REINFORCEMENT LEARNING

This iterative approach allows the model to collect also the data that is not ob-
tainable from the random init episodes.

Algorithm 5 Deep Planning Network (PlaNet)
Input:

R Action repeat
S Seed episodes
C Collect interval
B Batch size
L Chunk length
α Learning rate

p(st|st−1, at−1) Transition model
p(ot|st) Observation model
p(rt|st) Reward model
q(st|o≤t, a<t) Encoder
p(ε) Exploration noise

Initialize dataset D with S random seed episodes.
Initialize model parameters θ randomly.
while(not converged)

// Model fitting
for update step s = 1..C

Draw sequence chunks {(ot, at, rt)
L+k
t=k }

B
i=1 ∼ D uniformly at random

from the dataset.
Compute loss L(θ) .

Update model parameters θ ← θ − α∇θL(θ).

// Data Collection
o1 ← env.reset()
for time step t = 1..

⌈ T
R
⌉

do
Infer belief over current state q(st|o≤t, a<t) from the history.

at ← planner(q(st|o≤t, a<t), p) see 4 for details
Add exploration noise ε ∼ p(ε) to the action.
for action repeat k = 1..R

rk
t , ok

t+1 ← env.step(at)
rt, ot+1 ← ∑R

k=1 rk
t , oR

t+1
D ← D ∪ {(ot, at, rt)T

t=1}

42

Chapter 6

Experiments

In this chapter, we introduce the benchmark environments used to compute all the
tests. We show the results obtained, the proposal for improvement, and a compari-
son between the model-free approach represented by the DDPG algorithm and the
model-based approach represented by PlaNet.

6.1 DeepMind Control Suite

All the experiments are based on Deepmind Control Suite [8]. The control suite
is a set of continuous control tasks that are built for benchmarking reinforcement
learning agents. The main focus is on continuous control. The environments can
provide a fully observable state (a feature vectors) and a partially observable state
(a scene) frame. All the environments are written in Python and powered by the
MuJoCo physics engine. A visual representation of the main environments available
in the Deepmind control suite is shown below.

Figure 6.1: . Top: Acrobot, Ball-in-cup, Cart-pole, Cheetah, Finger, Fish, Hopper.
Bottom: Humanoid, Manipulator, Pendulum, Point-mass, Reacher, Swimmer (6 and
15 links), Walker.

The principal environment that we choose to experiment is the half-cheetah that
is a very common choice.

In this environment, the agent should move forward as quickly as possible with
a cheetah like body that is constrained to the plane. The reward is linearly pro-

43

CHAPTER 6. EXPERIMENTS

portional to a maximum of 10m/s i.e. r(v) = max(0, min(v/10, 1)). A vector of 18
dimensions describes each state while the actions are represented with a vector of 6
dimensions.

In addition to this environment, we have chosen three more to test the consis-
tency of the tests.

The other environments are:

• Cart-pole (task: swing-up): The classic cart-pole swing-up task. The agent
must balance a pole attached to a cart by applying forces to the cart alone. The
pole starts each episode hanging upside-down.

• Walker (task: walk): Agent should move forward as quickly as possible with
a bipedal walker constrained to the plane without falling or pitching the torso
too far forward or backward.

• Reacher: (mode: easy): The simple two-link planar reacher with a randomized
target location. The reward is one when the end effector penetrates the target
sphere.

6.2 Model Free experiments

We choose DDPG as a model-free algorithm for the experiments since it is compat-
ible with environments with continuous action spaces. It also guarantees a good
sample efficiency thanks to the buffer experience replay.

In this experiment we want to find out what level of performances a DDPG agent
can reach with a million of steps. We start from the original DDPG paper [10] but
when it was released, the Deepmind control suite did not exist yet. All the bench-
marks in that paper, for the cheetah problem, are based on another suite provided by
Open Ai called Gym. Even if both the environments from Open Ai and Deepmind
are based on the same physic engine (MuJoCo) and representing the same problem
(the cheetah problem), they have significant differences that require a different set
of parameters. All the parameters provided in the original paper are based on the
Open Ai Gym version.

We addressed this problem in two phases. At first, we precisely replicated the
original paper model with the Open Ai Gym environment to be sure to have a solid
implementation. We tried to retrain our model in the Deepmind Control Suite envi-
ronment without the tuning process, without success. The DDPG algorithm proved
to be very susceptible to the parameters. We tried another approach based on the
Deepmind Control Suite paper in which the author explained how they trained the
DDPG algorithm in their environments, and we are successfully reproduced their
results.

In our implementation, we used Adam ([24]) for learning the neural network
parameters with a learning rate of 10−4 for both the actor and critic networks. For
the critic network, we included a L2 weight decay of 0.002 and used a discount factor
of γ = 0.99. We used both a soft update (with τ = 0.001) and a hard update (every
100 steps) for the target networks. The activation function is the Relu for all the

44

CHAPTER 6. EXPERIMENTS

hidden layers and the Tanh for the actor final output layer. After the activation, I
apply batch normalization. In the final layer (for both actor and critic networks) both
the weight and bias are initialized from uniform distribution

[
−3× 10−3, 3× 10−3].

The hidden layers instead are initialized from uniform distributions
[
− 1√

f
, 1√

f

]
where f is the fan-in of the layer. The actor-network is composed of 3 hidden layers
with respectively [128,300,400] units. Only for the actor-network, the gradients are
clipped at [-1,1]. The critic-network is composed of two separate input layers (one
for the action with 256 units and two for the state with 128,256 units). Then the two
activations are summed together and passed to another 2 hidden layers with 300
and 400 units. Lastly we used an Ornstein-Uhlenbeck process to produce the noise
for the exploration. The parameters are: θ = 0.15 and σ = 0.3. We do not perform
warm-up episodes to prefill the buffer before training.

The results of our experiments are shown below.

Figure 6.2: Results of the training of the DDPG algorithm on DeepMind Control
Suite Ceetah environment.

Every episode corresponds to 1000 steps, and the training consists of 1 million
steps. During the training, at every action is added a gaussian noise. To under-
stand the real performance of the model, a test without noise is computed every 100
episodes.

45

CHAPTER 6. EXPERIMENTS

Figure 6.3: Results of the test with the model trained with the DDPG algorithm from
feature vectors.

This result is consistent with the performance published by the Deepmind Con-
trol Suite authors [8].

Figure 6.4: Result of the experiments from the Deepmind Control Suite team [8].

46

CHAPTER 6. EXPERIMENTS

As we can see from the image above our implementation outperform the A3C
algorithm and reach a cumulative reward value of 500 after 106 steps that is com-
patible with the 812.5 obtained from the research team after 108 steps.

After our experiments, we can say that the DDPG algorithm is proved to be
very sensitive to the hyperparameters. We notice that some parameters like the
initialization of the layers, the learning rate are more impact respect to the others.

6.3 Model Free experiments from frames

The use of the features vectors requires a human expert’s intervention. This can be
a limitation and also a source of error in the construction of the environment.

In this experiment, we want to find out if the DDPG algorithm is capable of
solving this task directly from the raw pixels and in that case, how much the difficult
of the problem increase.

With this new formulation, the observation provided does not correspond to
the real markovian state of the MDP. The authors of the Deepmind Control Suite
doesn’t use the DDPG algorithm to solve this problem but switched to an advanced
version of the algorithm called Distributed Distributional Deterministic Policy Gra-
dients (D4PG). They showed that this version of the algorithm after 108 steps, is
able to learn a policy also in this condition, but is not capable of achieving the same
performances of the experiments with features vector as input.

47

CHAPTER 6. EXPERIMENTS

Figure 6.5: Result of the Deepmind Control Suite team obtained with the D4PG
algorithm[8].

We still tried to train a DDPG agent from raw pixels. As suggest in the original
paper [10] we used the action repeats trick to enrich the information provided at
each step. So at each step, the agent computes the same action 3 times. We have
transformed the obtained 3 frames to grayscale, and we stacked them together the
creating a new single input of 3 feature maps. The original version does not apply
the grayscale conversion and provide an input of 9 feature maps. We notice any-
way that this preprocessing step is very useful. All the frames are downsampled
to 64x64 pixels and normalized in a range between [0,1]. We added a new set of
convolutional layers to the model to handle the frames high dimension. We experi-
mented with different approaches to network architecture. Initially, I tried to create
two convolutional networks, one for the actor and another for the critic but did not
work well. The best performance is obtained by weight-sharing of the convolutional
network, as shown in the image below.

48

CHAPTER 6. EXPERIMENTS

Figure 6.6: Visual representation of the model architecture with the convolutional
network shared between actor and critic.

Whenever the actor or the critic receives a frame as input, they call the shared
convolutional network to encode the frames and return the corresponding features
vector. As suggested in [8], only the Critic network is allowed to update the shared
network weights; in other words, the Actor gradients are truncated. The shared
network is composed of three layers, all with a kernel size of 3 x 3 with 32 channels
(only the first layer with has also a stride of 2), followed by two fully-connected
layers with 200 and 50 neurons, with layer normalization. All other parameters are
the same as in the previous experiment, except the batch size is set to 256.

We stop the training after 106 steps like all the other experiments. The results are
shown below.

49

CHAPTER 6. EXPERIMENTS

Figure 6.7: Result of training DDPG for the cheetah problem, after 1000 episodes
using frames as input .

As we can see, after 1000 episodes (1 million steps), the agent is not able to reach
significative performance. The training curve has risen slightly, indicating that full
training would require several thousand more episodes. Due to the limits of the
computational budget is was not possible to train the network entirely.

We suppose that the convolutional layers require a lot of transition before learn-
ing the useful pieces of information to capture from every image. Until the convolu-
tional layers are not trained, the policy can’t learn. We can clearly see how to learn
from raw pixels is more complicated than learn from the features vector.

6.4 Model Based experiments

The algorithm chosen for the model-based experiments is Planet. We have not im-
plemented it from scratch, but we build upon an open-source version available on
GitHub.

We test the PlaNet algorithm on the same benchmark environment to see if this
algorithm is able to solve in a million on steps the cheetah problem with raw pixels
as input.

We do not operate tuning, so the parameters are the same as the open-source
implementation, and we do not repeat them here.

50

https://github.com/Kaixhin/PlaNet

CHAPTER 6. EXPERIMENTS

Figure 6.8: Performance obtained with the open source version of PlaNet at training
time.

Like with the DDPG training, for every action, Gaussian noise is added, for this
reason, there is a variance in the performance, but the training curve is monotoni-
cally increasing.

To find the real performance of the agent, we can see the test curve in which the
same model is used without Gaussian noise.

Figure 6.9: Performance obtained with the open source version of PlaNet at test
time.

As we can see, after 1 million steps, the Planet agent is able to achieve a result of
578 rewards.

Beyond the final performances, it is interesting to deeply analyze the model pre-
dictions and the ability to generate predicted frames. So in this experiment, we focus
on the visual component of the prediction model.

51

CHAPTER 6. EXPERIMENTS

We only provided the first frame to the model, and it predicted all the rest with-
out receiving any further information beyond the actions performed at each step.

Both the observations and the predicted frames are resized to 64 x 64 pixels in
order to reduce the computational cost.

Figure 6.10: Comparison between the first 10 real observations (the top frame) and
the 10 predictions (the bottom frame).

As we can see from the image above, the model is able to predict all the first 10
steps correctly, but it is hard to keep the memory of the past experience for a long
time, so as the predictions go on, the errors pile up. Initially, these errors are barely
perceptible. For this reason, we have extended the planning horizon up to 20 steps
reaching the point where these errors are easily visible.

52

CHAPTER 6. EXPERIMENTS

Figure 6.11: We can start to see discrepancies as the predictions goes on.

In order to make this comparison more clearly, we calculate the mean squared
error (MSE) of each frames and we plot the pixels difference over the 20 planned
steps.

Figure 6.12: The mean squared error of the real and predicted frames over 20 steps.

This is not a problem for the planning algorithm since the model predict only for
a short horizon. In particular the authors of PlaNet has chosen a planning horizon
of 12 steps.

53

CHAPTER 6. EXPERIMENTS

We have also produced a heatmap to highlight the area in which the model pro-
duce the most errors.

Figure 6.13: The heatmap highlight the area of all the predicted frames where the
model has made the greatest errors.

As we could expect the heatmap show that the model make more error in the
area of the in the hind and front legs of the cheetah and in the zone of the head.

We also tested the reward predictions. The plot below show how close are the
predictions of the fully trained model and the effective received reward for an entire
episode.

54

CHAPTER 6. EXPERIMENTS

Figure 6.14: Comparison between the reward model predictions and the effective
reward obtained.

6.5 Experiments with PlaNet

In this section we investigate the chance to improve the performance of the open-
source version of PlaNet. We tried three different ways.

The first try is about the preprocessing phase of each frame steps. At each steps,
the generated frame is preprocessed before being used as input to the model. In
particular, operation of resizing is applied by the cv2 library using the INTER LIN-
EAR algorithm. Exploring the DeepMind Control Suite code, we saw that this pro-
cess could be avoided indicating directly to the camera the size of the frame to be
rendered with the command: self._env.physics.render(height=64, width=64,
camera_id=0). We found that also the original implementation uses a resize method
instead of native render in low dimensions. In particular they use the "skimage.transform.resize"
method as you can see in their implementation.

We can see how changing this single one line of code has a huge positive impact
on the final performance.

55

https://github.com/google-research/planet/blob/master/planet/control/wrappers.py

CHAPTER 6. EXPERIMENTS

Figure 6.15: Performance obtained at training time without resize the frames.

Figure 6.16: Performance obtained at test time without resize the frame.

56

CHAPTER 6. EXPERIMENTS

Figure 6.17: Comparison between the performance of PlaNet with and without the
frames resizing.

We think that this improvement is due to the fact that some information is lost
when the algorithm of resizing are applied in the preprocessing phase.
A second experiment is based on the idea of enriching the information at each step
with the obtained reward, in addition to the current frame. During the experiments,
we notice that when the model is not fully trained can happen that it keeps doing the
same action believing to collect rewards. Indeed what really happening is that the
agent keeps predicting a reward when in the real environment, it doesn’t receive any
good feedback. After some training iterations, the agent fits better the environment
dynamics, and the problem disappears. So the idea is to explicitly provide also
the received reward so the agent can use it to recognize, at inference time, that it’s
predictions are not consistent with what is really happening. So, we modify the
model by concatenating the encoded current observation with the previous reward.

57

CHAPTER 6. EXPERIMENTS

Figure 6.18: Concatenating the reward to the current observation.

The result of training seems to be not so promising. The training curve has more
variance and does not overcome the previous version.

Figure 6.19: Training curve of Planet model with reward as input.

The test curve confirms that this model is worse than the original.

58

CHAPTER 6. EXPERIMENTS

Figure 6.20: The test curve is more unstable and achieve less cumulative reward
than the original model.

After 500 iterations, we saw that the model is not outperforming the original
version and we stop the experiment.

Figure 6.21: The test curve is more unstable and achieve less cumulative reward
than the original model.

We tried to add the reward information to other components of the model (e.g.,
in the memory module or directly in the reward module), but none of these tests
worked and the presented version is the one that has given the best results.

59

CHAPTER 6. EXPERIMENTS

The last idea is to add regularizer to improve the model predictions. One of the
main problems of using a planner in a model that is just an approximation of the
real environment dynamics, is that the planner will exploit the learned model mod-
els inaccuracies. So, in the areas in which the model is uncertain, the predictions
tend to be too optimistic and lead the planner to sub-optimal actions. We plot a
comparison of the predicted and the rel reward obtained during the initial training
episodes. From the image below we can see how initially the predictions tends to be
too optimistic, and the provided plan fail to reach the expectations obtaining a low
reward.

Figure 6.22: Comparison between the expected rewards predictions and the actual
rewards obtained from the first 100 training episodes.

This problem is more severe in the early stages and less in later episodes when
the agent has collected more data. Indeed, the more the agent interacts with the
environment, the more data it collects, the more the predictions are precise. We are
investigating a method to reduce this prediction gap just from the first episodes.

In their research, Rinu Boney et all [25] tries to alleviate this problem by penaliz-
ing the optimizer from considering trajectories that are outside the experience replay
buffer (that contains all the past experiences). We call this new metric: familiarity
of the trajectories. So the planning objective is to maximize the rewards and also the
familiarity of the plan respect to the data, with a new parameter α that modulates
the weight between both costs.

a∗t , . . . , a∗t+H = argmax
at,...,at+H

∑t+H
τ=t r (sτ, aτ)+ α log p (st, at, st+1, . . . , st+H, at+H, st+H+1)

Where p(ot, at, ..., ot+H, at+H) is the probability of observing a given trajectory in
the past experience. They approximate the joint probability of the whole trajectory
as a sum of joint probabilities of each transition in the trajectory

a∗t , . . . , a∗t+H = argmax
at,...,at+H

∑t+H
τ=t [r (sτ, aτ) + α log p (sτ, aτ, sτ+1)]

60

CHAPTER 6. EXPERIMENTS

To calculate log p (sτ, aτ, sτ+1) they uses a denoising autoencoder (DAE). DAE
does not build an explicit probabilistic model p (sτ, aτ, sτ+1) but learns to approx-
imate the derivative of the log probability density. To be more specific the theory
of denoising states that, for zero-mean Gaussian corruption, the optima denoising
function g(x̃) is given by: g(x̃) = x̃ + σ2

n
∂

∂x̃ log p(x̃) where x̃ is the corrupted input,
p(x̃) is the probability density function for x̃, σn is the standard deviation of the
Gaussian corruption. So given the corrupted input x̃ and a fully trained DAE g(x̃),
we can derive the gradient of the log-probability of the data distribution convolved
with a Gaussian distribution: ∂

∂x̃ log p(x̃) ∝ g(x)− x. They use ∂
∂x̃ log p(x̃) instead of

∂
∂x̃ log p(x) assuming ∂

∂x̃ log p(x̃) ≈ ∂
∂x log p(x).

For the experiments, they used an environment with low dimensional input (fea-
tures state) and so with another model based algorithm, called PETS [26]. We ini-
tially try to replicate their solution, but the difference between the two models and
the overload due to the processing of the image (they worked only with features
vectors, not with frames) make the model so slow to be useless. For this reason,
we use the same idea, but we implement it differently. We work directly with the
prediction model and not with the planned. Another fundamental difference is that
we work at training time and not at inference time. The PlaNet prediction model
does not produce directly a new observation but works only in a latent space. So it
makes no sense to train DAE with the observations collected in the dataset. Instead,
we train the DAE directly in latent space also at training time. The second difference
is about the input dimension. We feed the DAE with the entire plan at each step, so
we train it by concatenating all the transitions according to the planning horizon
parameter. We experiments to different ways to concatenate transitions:

1. Concatenation of triplets: every transition is composed by 3 elements: (st, at, st+1).
But in the final concatenation, all the elements placed at the extremes will be
repeated: [(s0, a0, s1), (s1, a1, s2)...(s10, a10, s11), (s11, a11, s12)]

2. Concatenation as chain: we remove the repetitions: [(s0, a0, s1, a2, s2...s10, a10, s11, a11, s12)]

Figure 6.23: Comparison between the two strategies of input shape for the regular-
izer.

61

CHAPTER 6. EXPERIMENTS

The final model architecture consists of one single linear layer with 600 units and
a gaussian noise of zero mean and a standard deviation of 0.3. The input dimension
is the sum of the belief state size, the posterior state size, and the size of the actions
multiplied for the planning horizon. As we expected, the regularizer’s effect is to
improve the model predictions immediately and allow the model to increment the
sample efficiently just from the initial episodes.

Figure 6.24: Comparison between the expected rewards predictions and the actual
rewards obtained from the first 100 training episodes with regularizer.

We can see from the image above that the reward’s predictions start immediately
to match with the real reward when the regularizer is activated. To make more
clear the comparison between the prediction of the model with and without the
regularizer, we created a new plot. In this plot we indicate the difference between
the predicted reward and the obtained one over the episodes of the training. We can
clearly see that the prediction error of the regularized model, represented with the
blue line, is clearly lower in the initial episodes and that after some episodes the two
values starts to converge.

62

CHAPTER 6. EXPERIMENTS

Figure 6.25: The absolute reward prediction error. The moving average technique is
applied with a window of 30.

To be more clear we also calculate the relative error that remain consistent with
the results above.

Figure 6.26: The relative reward prediction error. The moving average technique is
applied with a window of 30.

This improvement allows the model to accumulate more rewards just in the ini-
tial episodes. This can be very useful where it is not possible to produce a huge
amount of data.

63

CHAPTER 6. EXPERIMENTS

Figure 6.27: Comparison between the full trained model with and without the reg-
ularizer.

According to the research of Rinu Boney et all [25], the improvement of the regu-
larizer decrease during the training, but in our case, the performance of the original
model does not surpass the performance of the model with regularized. We think
that after a certain number of iterations, the model has accumulated enough knowl-
edge about the environment to do without the regularizer. As proof of this, we
point out that to achieve these results, we have to decrease the impact of the regu-
larizer during training. From episode 750, we deactivate it entirely. We observed an
improvement, that needs to be validated with other experiments on other environ-
ments.

6.6 Comparisons

Now it’s time to compare the model-based and the model-free approach.
We specify that for this final comparison we use the DDPG result obtained with

the model trained from the features vectors, while the PlaNet results are obtained
with a model trained via raw pixels.

Despite the difference in the input complexity, the model-based approach achieves
better results. In particular, in the initial phase, when the model has less sample and
the regularizer influence is more intense.

64

CHAPTER 6. EXPERIMENTS

Figure 6.28: Comparison between the performance of PlaNet (trained from frames)
and DDPG (trained fro features vectors) for the Ceetah environment.

We also tried other different environments, and we saw that PlaNet roughly
maintain the advantage over DDPG. We specify that for these other environments,
we do not use the regularizer.

Figure 6.29: Comparison between the performance of PlaNet (trained from frames)
and DDPG (trained fro features vectors) for the Cartpole-Swingup environment.

65

CHAPTER 6. EXPERIMENTS

Figure 6.30: Comparison between the performance of PlaNet (trained from frames)
and DDPG (trained fro features vectors) for the Reacher-easy environment.

Figure 6.31: Comparison between the performance of PlaNet (trained from frames)
and DDPG (trained fro features vectors) for the Walker-walk environment.

Coherently with the theory, we notice an evident difference between the training
time for the model-based and model-free algorithm. The PlaNet model can achieve
a better result with less sample because it makes more calculations for each step.
For this reason, the training time is longer when we train a model-based agent (the
same is for the amount of GPU memory). Since the model-free has not a planner, it
is also faster at inference time.

66

CHAPTER 6. EXPERIMENTS

Figure 6.32: The plot shows a comparison between the training clock time (hours)
required to train a DDPG linear model, DDPG convolutional model, PlaNet model
and PlaNet model with the regularizer on a GPU Nvidia GeForce 1080ti..

67

Chapter 7

Conclusions

This thesis aimed to make a comparison between the model-based and the model-
free approach in the context of Deep Reinforcement Learning (DRL). A set of tests
have been executed over four environments from DeepMind Control Suite. The
DRL algorithm known as Deep Deterministic Policy Gradient is used to test the
model-free approach, while the chosen model-based algorithm was PlaNet.

The DDPG algorithm was implemented and tested over all the four environ-
ments chosen for the experiments. Some modifications, suggested by the Control
Suite authors, were applied to the original algorithm and parameters to adapt them
to the Control Suite environments. After this improvement, the algorithm has been
able to learn a policy when a state feature was provided. These suggestions are not
provided for the version with raw-pixels input. This problem is more difficult since
the input is way more complicated. Features state is described by a vector of 18 di-
mensions (for the cheetah problem) while a single frame is a 64x64 RGB image. For
the raw pixels input version the Control Suite authors have used a more advanced
version of the algorithm called Distributed Distributional Deterministic Policy Gra-
dients (D4PG). They showed that this version could also learn in this condition but
is not capable of achieving the same performances of the experiments with features
vector as input. Moreover, that model has required 108 number of samples. For our
work, we still tried to train a DDPG model with frames as input, but we have been
not enough computational budget to reach such a high number of steps, so we stop
the training after 1000 episodes (106 steps, like all the other experiments). These re-
sults showed how difficult is the problem of solving that benchmark environment
directly from raw-pixels input.

PlaNet algorithm instead is natively designed to work with raw-pixels, and so
the algorithm converged for all the tested environments. We also discovered how
to improve the general performance by removing the frame’s compression in the
preprocessing phase asking directly the Control Suite to render the frames in the
specific dimensions required.

Next, two main ideas to improve the PlaNet model were tested. The first one
was about to use the obtained reward as additional information to enrich the current
state, but it failed. The second idea is based on the fact that the model performances
are directly connected to the reward predictions. In the early episodes, where the

68

CHAPTER 7. CONCLUSIONS

model is not trained, it tends to be too optimistic and to give erroneous information
to the planner. This leads to a suboptimal plan and so a low cumulated reward,
because the planner will exploit the weaknesses of the predictive model instead
of optimizing the real agent’s behaviour. For this reason, the second idea was to
improve the model prediction ability by forcing the predictions to stay close to the
collected experience. In other words, during the training, we incremented the model
loss when the prediction was "unlikely" with respect to the trajectory collected in the
experience replay buffer. The persistence of the regularizer can penalize the model
because it limits the exploration of the environment, so we reduce the impact of
the it during the training. In this way, we obtained a positive impact from the first
iterations, and we maintained the same performance in the last episodes. We see a
positive impact from the use of the regularizer, and we believe it deserves further
study and experimentation, even with other environments.

The PlaNet model was able to reach better results with respect to the DDPG al-
gorithm even if it worked directly with raw pixels while DDPG worked with feature
states. This result is confirmed also for the other three environments and showed
how the model-based approach leads to better performance and more sample effi-
ciency. Since the network architecture in the model-based approach is more com-
plex, the training time is longer. The DDPG model is faster at inference time and
required less clock time to be trained (but more samples). For the task of the train
an agent in the real world, the sample efficiency is a critic parameter. In facts, the
cost of acquiring samples in a real environment is an order of magnitude greater
than train the model with them. Furthermore, the RGB camera is a very common,
powerful and generic (not single task-specific) type of sensor that a lot of real-world
robots could use. For these reasons, even if PlaNet algorithm has not already tested
in a real-world scenario, we consider it a fundamental milestone to achieve the use
of the Reinforcement Learning for a robot in the real world.

The following could be possible improvements for future research directions.

DDPG works well when a full markovian state is provided. We saw that the
PlaNet model could produce a latent space that contains enough information to
allow predictions over multiple steps. An interesting experiment could be to use
PlaNet as an encoder to produce the latent states used then to train the DDPG algo-
rithm.

In the model-based approach, the planner ability is fixed and does not improve
during the training epochs, as we saw with the model-free policy. The performance
improvements are due to the increment of the knowledge about the environment
that allows the model to make better predictions. So, to have a better model, we
need to reduce the uncertainty over the environment. An idea of improvement
could be the change of the planner objective in favour of the exploration during
training. Once the model is fully trained a reward exploiting objective could be
restored.

69

List of Figures

2.1 Fully-Connected Feed-Forward Network. Image from [16]. 6
2.2 Standard RNN architecture and an unfolded structure with T time

steps. Image from [17]. 7
2.3 The output of the sigmoid is a vector of values from zero (completely

forget) to one (completely keep). Image from [15]. 8
2.4 The Sigmod layer is used to decide what value to update, the Tanh

layer to generate the vector of "candidate values" that could be added
to the state. Next decides wich new information ignores, then in the
tanh layer, it processes the new information respect the previously
hidden layer and with the update gate decides which one to exclude
for the update and which ti keep. Now it combines all this informa-
tion to calculate the new Cell State. Image from [15]. 9

2.5 Use the internal state and the output gate to produce the new hidden
state. Image from [15]. 9

2.6 The LSTM architecture consist on a concatenation of LSTM cell units.
Image from [15]. 10

2.7 Illustration of the reparameterization trick. 14
2.8 A training-time variational autoencoder implemented as a feedfor-

ward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Image from [20]. . . . 15

3.1 The agent-environment interaction in a Markov decision process. (Im-
age source: Sec. 3.1 Sutton and Barto (2017) [21] 18

3.2 The GPI schema. (Image source: Sec. 4.6 Sutton and Barto (2017) [21] 22
3.3 The actor-critic architecture. [Image source: Sec. 6.6 Sutton and Barto

(2017) [21]] . 25

4.1 A visual representation of the DDPG architecture. The Q-values is
used only at training time. 31

5.1 The transition model at inference time. The current frame is encoded
and the RNN produces the current Belief State encoding the current
action and the previous posterior state. The current encoded observa-
tion and the Belief State are combined to produce the Features Vector
from where the posterior Gaussian parameters are produced. In the
last step, the current Posterior state is sampled from the Gaussian. . . 36

70

LIST OF FIGURES

5.2 The current Latent State is produced by the combination of both Belief
State and Posterior State. This Latent State is then used by the Reward
Model to predict the reward and by the Observation Model to recon-
struct the current observation. With these two results we can calcu-
late the mean squared error (by sampling the original result from the
buffer) and backpropagate the loss to train the transition model. . . 37

5.3 At inference time we have no more the experience replay buffer that
provide us the observation for each step. We only have the observa-
tion for the current step provided by the environment and we have to
predict the next for many steps ahead. 38

5.4 We can reuse the Memory model (RNN) used for the transition model
at training time but we need to retrain the Gaussian model. We need
a way to obtain the same parameters used by the model at training
time. 39

5.5 The loss indicates how much information we lost by approximate the
Gaussian produced at training time with the one used at inference
time. 39

6.1 . Top: Acrobot, Ball-in-cup, Cart-pole, Cheetah, Finger, Fish, Hopper.
Bottom: Humanoid, Manipulator, Pendulum, Point-mass, Reacher,
Swimmer (6 and 15 links), Walker. 43

6.2 Results of the training of the DDPG algorithm on DeepMind Control
Suite Ceetah environment. 45

6.3 Results of the test with the model trained with the DDPG algorithm
from feature vectors. 46

6.4 Result of the experiments from the Deepmind Control Suite team [8]. 46
6.5 Result of the Deepmind Control Suite team obtained with the D4PG

algorithm[8]. 48
6.6 Visual representation of the model architecture with the convolutional

network shared between actor and critic. 49
6.7 Result of training DDPG for the cheetah problem, after 1000 episodes

using frames as input . 50
6.8 Performance obtained with the open source version of PlaNet at train-

ing time. 51
6.9 Performance obtained with the open source version of PlaNet at test

time. 51
6.10 Comparison between the first 10 real observations (the top frame) and

the 10 predictions (the bottom frame). 52
6.11 We can start to see discrepancies as the predictions goes on. 53
6.12 The mean squared error of the real and predicted frames over 20 steps. 53
6.13 The heatmap highlight the area of all the predicted frames where the

model has made the greatest errors. 54
6.14 Comparison between the reward model predictions and the effective

reward obtained. 55
6.15 Performance obtained at training time without resize the frames. . . 56
6.16 Performance obtained at test time without resize the frame. 56

71

LIST OF FIGURES

6.17 Comparison between the performance of PlaNet with and without
the frames resizing. 57

6.18 Concatenating the reward to the current observation. 58
6.19 Training curve of Planet model with reward as input. 58
6.20 The test curve is more unstable and achieve less cumulative reward

than the original model. 59
6.21 The test curve is more unstable and achieve less cumulative reward

than the original model. 59
6.22 Comparison between the expected rewards predictions and the actual

rewards obtained from the first 100 training episodes. 60
6.23 Comparison between the two strategies of input shape for the regu-

larizer. 61
6.24 Comparison between the expected rewards predictions and the ac-

tual rewards obtained from the first 100 training episodes with regu-
larizer. 62

6.25 The absolute reward prediction error. The moving average technique
is applied with a window of 30. 63

6.26 The relative reward prediction error. The moving average technique
is applied with a window of 30. 63

6.27 Comparison between the full trained model with and without the reg-
ularizer. 64

6.28 Comparison between the performance of PlaNet (trained from frames)
and DDPG (trained fro features vectors) for the Ceetah environment. 65

6.29 Comparison between the performance of PlaNet (trained from frames)
and DDPG (trained fro features vectors) for the Cartpole-Swingup en-
vironment. 65

6.30 Comparison between the performance of PlaNet (trained from frames)
and DDPG (trained fro features vectors) for the Reacher-easy environ-
ment. 66

6.31 Comparison between the performance of PlaNet (trained from frames)
and DDPG (trained fro features vectors) for the Walker-walk environ-
ment. 66

6.32 The plot shows a comparison between the training clock time (hours)
required to train a DDPG linear model, DDPG convolutional model,
PlaNet model and PlaNet model with the regularizer on a GPU Nvidia
GeForce 1080ti.. 67

72

Bibliography

[1] A. M. Turing, “Computing machinery and intelligence,” in Parsing the Turing
Test, pp. 23–65, Springer, 2009.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Master-
ing the game of go with deep neural networks and tree search,” nature, vol. 529,
no. 7587, pp. 484–489, 2016.

[3] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of reinforce-
ment learning to aerobatic helicopter flight,” in Advances in neural information
processing systems, pp. 1–8, 2007.

[4] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi,
Q. Fischer, S. Hashme, C. Hesse, et al., “Dota 2 with large scale deep reinforce-
ment learning,” arXiv preprint arXiv:1912.06680, 2019.

[5] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pa-
chocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al., “Learning dexterous
in-hand manipulation,” The International Journal of Robotics Research, vol. 39,
no. 1, pp. 3–20, 2020.

[6] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel, “Deep spatial
autoencoders for visuomotor learning,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 512–519, IEEE, 2016.

[7] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network dy-
namics for model-based deep reinforcement learning with model-free fine-
tuning,” in 2018 IEEE International Conference on Robotics and Automation (ICRA),
pp. 7559–7566, IEEE, 2018.

[8] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Ab-
dolmaleki, J. Merel, A. Lefrancq, et al., “Deepmind control suite,” arXiv preprint
arXiv:1801.00690, 2018.

[9] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson,
“Learning latent dynamics for planning from pixels,” in International Conference
on Machine Learning, pp. 2555–2565, 2019.

73

BIBLIOGRAPHY

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv
preprint arXiv:1509.02971, 2015.

[11] E. Langlois, S. Zhang, G. Zhang, P. Abbeel, and J. Ba, “Benchmarking model-
based reinforcement learning,” arXiv preprint arXiv:1907.02057, 2019.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[13] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[14] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent neural
networks for sequence learning,” arXiv preprint arXiv:1506.00019, 2015.

[15] “Understanding lstm networks.” http://neuralnetworksanddeeplearning.
com/chap5.html. Posted on: 2015-08-27.

[16] M. A. Nielsen, “Neural networks and deep learning,” 2018.

[17] Z. Cui, R. Ke, Z. Pu, and Y. Wang, “Deep bidirectional and unidirectional lstm
recurrent neural network for network-wide traffic speed prediction,” arXiv
preprint arXiv:1801.02143, 2018.

[18] L. Jing and Y. Tian, “Self-supervised visual feature learning with deep neural
networks: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2020.

[19] D. P. Kingma and M. Welling, “An introduction to variational autoencoders,”
arXiv preprint arXiv:1906.02691, 2019.

[20] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

[21] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[22] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,
pp. 279–292, 1992.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-
level control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[25] R. Boney, N. Di Palo, M. Berglund, A. Ilin, J. Kannala, A. Rasmus, and
H. Valpola, “Regularizing trajectory optimization with denoising autoen-
coders,” in Advances in Neural Information Processing Systems, pp. 2859–2869,
2019.

74

http://neuralnetworksanddeeplearning.com/chap5.html
http://neuralnetworksanddeeplearning.com/chap5.html

BIBLIOGRAPHY

[26] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models,” in Advances in
Neural Information Processing Systems, pp. 4754–4765, 2018.

75

	Introduction
	Thesis Outline

	Foundamentals of Machine Learning
	Introduction
	Supervised Learning
	Recurrent Neural Networks

	Unsupervised Learning
	Variational Autoencoder

	Reinforcement Learning

	Elements of Reinforcement Learning
	Markov Decision Process
	Markov Chain
	Markov Decision Process
	Partially Observable Markov Decision Process

	Solving Markov Decision Process
	Prediction Problem
	Control Problem

	Taxonomy of Reinforcement Learning Algorithms

	Model Free Reinforcement Learning
	Deep Reinforcement Learning
	Deep Q Network

	Policy Gradient
	REINFORCE algorithm

	Actor-Critic:
	Deep Deterministic Policy Gradient

	Model Based Reinforcement Learning
	Model Based Reinforcement Learning
	Planet
	RSSM
	Planning

	Cross Entropy Method
	Algorithm

	Experiments
	DeepMind Control Suite
	Model Free experiments
	Model Free experiments from frames
	Model Based experiments
	Experiments with PlaNet
	Comparisons

	Conclusions
	Bibliography

